%I #60 Mar 29 2024 08:47:31
%S 1,10,89,791,7030,62479,555281,4935050,43860169,389806471,3464398070,
%T 30789776159,273643587361,2432002510090,21614379003449,
%U 192097408520951,1707262297685110,15173263270645039,134852107138120241
%N Even-indexed Chebyshev U-polynomials evaluated at sqrt(11)/2.
%C This is the m=11 member of the m-family of sequences S(n,m-2)+S(n-1,m-2) = S(2*n,sqrt(m)) (for S(n,x) see Formula). The m=4..10 instances are A005408, A002878, A001834, A030221, A002315, A033890 and A057080, resp. The m=1..3 (signed) sequences are: A057078, A057077 and A057079, resp.
%C General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim_{n->oo} a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - _Ctibor O. Zizka_, Sep 02 2008
%C The primes in this sequence are 89, 389806471, 192097408520951, 7477414486269626733119, ... - _Ctibor O. Zizka_, Sep 02 2008
%C The aerated sequence (b(n))n>=1 = [1, 0, 10, 0, 89, 0, 791, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -7, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - _Peter Bala_, Mar 22 2015
%H G. C. Greubel, <a href="/A057081/b057081.txt">Table of n, a(n) for n = 0..1000</a>
%H Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, <a href="https://www.emis.de/journals/INTEGERS/papers/p38/p38.Abstract.html">Polynomial sequences on quadratic curves</a>, Integers, Vol. 15, 2015, #A38.
%H K. Andersen, L. Carbone, and D. Penta, <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
%H Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H Wolfdieter Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38 (2000) 408-419. Eq.(44), rhs, m=11.
%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-1).
%F a(n) = 9*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
%F a(n) = S(n, 9) + S(n-1, 9) = S(2*n, sqrt(11)) with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 9) = A018913(n).
%F G.f.: (1+x)/(1-9*x+x^2).
%F Let q(n, x) = Sum{i=0..n} x^(n-i)*binomial(2*n-i, i), a(n) = (-1)^n*q(n, -11). - _Benoit Cloitre_, Nov 10 2002
%F a(n) = L(n,-9)*(-1)^n, where L is defined as in A108299; see also A070998 for L(n,+9). - _Reinhard Zumkeller_, Jun 01 2005
%p A057081 := proc(n)
%p option remember;
%p if n <= 1 then
%p op(n+1,[1,10]);
%p else
%p 9*procname(n-1)-procname(n-2) ;
%p end if;
%p end proc: # _R. J. Mathar_, Apr 30 2017
%t CoefficientList[Series[(1 + x)/(1 - 9*x + x^2), {x,0,50}], x] (* or *) LinearRecurrence[{9,-1}, {1,10}, 50] (* _G. C. Greubel_, Apr 12 2017 *)
%o (Sage) [(lucas_number2(n,9,1)-lucas_number2(n-1,9,1))/7 for n in range(1, 20)] # _Zerinvary Lajos_, Nov 10 2009
%o (PARI) Vec((1+x)/(1-9*x+x^2) + O(x^30)) \\ _Michel Marcus_, Mar 22 2015
%Y Cf. A005408, A002878, A001834, A030221, A002315, A033890, A057080.
%Y Cf. A057078, A057077, A057079.
%Y Cf. A018913, A049310.
%Y Cf. A100047.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Aug 04 2000