login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057076 A Chebyshev or generalized Fibonacci sequence. 7

%I

%S 2,11,119,1298,14159,154451,1684802,18378371,200477279,2186871698,

%T 23855111399,260219353691,2838557779202,30963916217531,

%U 337764520613639,3684445810532498,40191139395243839,438418087537149731

%N A Chebyshev or generalized Fibonacci sequence.

%H P. Bhadouria, D. Jhala, B. Singh, <a href="http://www.tjmcs.com/includes/files/articles/Vol8_Iss1_81 - 92_Binomial_Transforms_of_the_k-Lucas.pdf">Binomial Transforms of the k-Lucas Sequences and its [sic] Properties</a>, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence R_3.

%H S. Falcon, <a href="http://dx.doi.org/10.4236/am.2014.515216">Relationships between Some k-Fibonacci Sequences</a>, Applied Mathematics 5 (2014), 2226-2234

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-1).

%F a(n) = S(n, 11) - S(n-2, 11) = 2*T(n, 11/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 11)=A004190(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.

%F G.f.: (2-11x)/(1-11x+x^2).

%F a(n) = a(-n). - _Michael Somos_, Apr 25 2003

%F a(n) = ap^n + am^n, with ap := (11+sqrt(117))/2 and am := (11-sqrt(117))/2.

%e G.f. = 2 + 11*x +119*x^2 + 1298*x^3 + 14159*x^4 + 154451*x^5 + ...

%t a[0] = 2; a[1] = 11; a[n_] := 11a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* _Robert G. Wilson v_, Jan 30 2004 *)

%t a[ n_] := 2 ChebyshevT[ n, 11/2]; (* _Michael Somos_, May 28 2014 *)

%o (PARI) {a(n) = subst( poltchebi(n), x, 11/2) * 2};

%o (PARI) {a(n) = 2 * poltchebyshev(n, 1, 11/2)}; /* _Michael Somos_, May 28 2014 */

%o (PARI) Vec((2-11*x)/(1-11*x+x^2) + O(x^40)) \\ _Michel Marcus_, Feb 18 2016

%o (Sage) [lucas_number2(n,11,1) for n in range(27)] # _Zerinvary Lajos_, Jun 25 2008

%Y a(n) = sqrt(4+117*A004190(n-1)^2), n>=1.

%K nonn,easy

%O 0,1

%A _Wolfdieter Lang_, Oct 31 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 23:03 EST 2019. Contains 320411 sequences. (Running on oeis4.)