login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057059 Let R(i,j) be the rectangle with antidiagonals 1; 2,3; 4,5,6; ... Define i(m) and j(m) by R(i(m),j(m)) = m. Then a(n) = j(A057027(n)). 4
1, 2, 1, 3, 1, 2, 4, 1, 3, 2, 5, 1, 4, 2, 3, 6, 1, 5, 2, 4, 3, 7, 1, 6, 2, 5, 3, 4, 8, 1, 7, 2, 6, 3, 5, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 12, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 13, 1, 12, 2, 11, 3, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Since A057027 is a permutation of the natural numbers, every natural number occurs in this sequence infinitely many times.

Triangle of spiral permutations. In the Saclolo reference sigma_n(x) is called a spiral permutation. - Michael Somos, Apr 21 2011

Second inverse function (numbers of columns) for pairing function A194982. - Boris Putievskiy, Jan 10 2013

The triangle T(n, k) (see the formula by M. Somos) has in row n a certain permutation of [1, 2, ..., n]. This permutation is useful for the proof of the identity Product_{k=1..n} f(sin(Pi*k/(2*n+1))) = Product_{m=1..n} f(sin(2*Pi*m/(2*n+1))) for any function f, n >= 1 (also for  n = 0). The permutation of the arguments of f goes via m = T(n, k), and this is due to sin(Pi-x) = sin(x). Of course, one can replace the product by a sum in this identity. The product identity is used in a trivial variant of Eisenstein's proof of the quadratic reciprocity law. See the W. Lang Aug 28 2016 comment under A049310. - Wolfdieter Lang, Aug 28 2016

For the proof of the (slightly extended) conjecture stated in the formula section by L. Edson Jeffery see the W. Lang link. - Wolfdieter Lang, Sep 14 2016

LINKS

Table of n, a(n) for n=1..85.

Wolfdieter Lang, Proof of a Conjecture Involving Chebyshev Polynomials.

Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, 2012,  arXiv:1212.2732 [math.CO], 2012.

M. P. Saclolo, How a Medieval Troubadour Became a Mathematical Figure see p. 684 Equation (1)

FORMULA

T(n, k) = k / 2 if k is even, n - (k - 1) / 2 if k is odd where 0 < k <= n are integers. - Michael Somos, Apr 21 2011

(Conjecture) Define the Chebyshev polynomials of the second kind by U_0(t) = 1, U_1(t) = 2*t, and U_r(t) = 2*t*U_(r-1)(t) - U_(r-2)(t) (r>1). Then T(n,k) = Sum_{j=1..n} U_(k-1)(cos((2*j-1)*Pi/(2*n+1))), 1<=k<=n. - L. Edson Jeffery, Jan 09 2012 (See the Sep 14 2016 comment above.)

From Boris Putievskiy, Jan 10 2013: (Start)

a(n) = -(A004736(n)+(A002260(n)-1)/2)*((-1)^A002260(n)-1)/2+(A002260(n)/2)*((-1)^A002260(n)+1)/2.

a(n) = -(j+(i-1)/2)*((-1)^i-1)/2+(i/2)*((-1)^i+1)/2, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2). (End)

EXAMPLE

Formatted as a triangle T(n, k) (see M. Somos' formula):

n, 2n+1\k 1 2  3 4  5 6  7 8  9 10 11 12 ..

1,   3:   1

2,   5:   2 1

3,   7:   3 1  2

4,   9:   4 1  3 2

5,  11:   5 1  4 2  3

6,  13:   6 1  5 2  4 3

7,  15:   7 1  6 2  5 3  4

8,  17:   8 1  7 2  6 3  5 4

9,  19:   9 1  8 2  7 3  6 4  5

10, 21:  10 1  9 2  8 3  7 4  6  5

11, 23:  11 1 10 2  9 3  8 4  7  5  6

12, 25:  12 1 11 2 10 3  9 4  8  5  7  6

... formatted by Wolfdieter Lang, Aug 28 2016

n=4: sin identity: sin(Pi*k/9)  =  sin(2*Pi*T(4, k))/9), for k =1, ..., n. That is: sin(Pi*1/9) = sin(2*Pi*4/9)  =  sin(Pi*(1 - 8/9), sin(Pi*3/9) = sin(2*Pi*3/9) = sin(Pi*(1 - 6/9)). For even k this is trivial. - Wolfdieter Lang, Aug 28 2016

MATHEMATICA

Table[If[OddQ@ k, n - (k - 1)/2, k/2], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Aug 28 2016 *)

PROG

(PARI) {T(n, k) = if( k<1 | k>n, 0, if( k%2, n - (k - 1) / 2, k / 2))} /* Michael Somos, Apr 21 2011 */

CROSSREFS

Cf. A057058, A194982; related to A141419.

Sequence in context: A144113 A165416 A222818 * A169896 A210208 A162306

Adjacent sequences:  A057056 A057057 A057058 * A057060 A057061 A057062

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jul 30 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 09:38 EST 2017. Contains 295115 sequences.