The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057059 Let R(i,j) be the rectangle with antidiagonals 1; 2,3; 4,5,6; ... Define i(m) and j(m) by R(i(m),j(m)) = m. Then a(n) = j(A057027(n)). 4
 1, 2, 1, 3, 1, 2, 4, 1, 3, 2, 5, 1, 4, 2, 3, 6, 1, 5, 2, 4, 3, 7, 1, 6, 2, 5, 3, 4, 8, 1, 7, 2, 6, 3, 5, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 12, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 13, 1, 12, 2, 11, 3, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Since A057027 is a permutation of the natural numbers, every natural number occurs in this sequence infinitely many times. Triangle of spiral permutations. In the Saclolo reference sigma_n(x) is called a spiral permutation. - Michael Somos, Apr 21 2011 Second inverse function (numbers of columns) for pairing function A194982. - Boris Putievskiy, Jan 10 2013 The triangle T(n, k) (see the formula by Michael Somos) has in row n a certain permutation of [1, 2, ..., n]. This permutation is useful for the proof of the identity Product_{k=1..n} f(sin(Pi*k/(2*n+1))) = Product_{m=1..n} f(sin(2*Pi*m/(2*n+1))) for any function f, n >= 1 (also for  n = 0). The permutation of the arguments of f goes via m = T(n, k), and this is due to sin(Pi-x) = sin(x). Of course, one can replace the product by a sum in this identity. The product identity is used in a trivial variant of Eisenstein's proof of the quadratic reciprocity law. See the W. Lang Aug 28 2016 comment under A049310. - Wolfdieter Lang, Aug 28 2016 For the proof of the (slightly extended) conjecture stated in the formula section by L. Edson Jeffery see the W. Lang link. - Wolfdieter Lang, Sep 14 2016 LINKS Wolfdieter Lang, Proof of a Conjecture Involving Chebyshev Polynomials. Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, 2012,  arXiv:1212.2732 [math.CO], 2012. M. P. Saclolo, How a Medieval Troubadour Became a Mathematical Figure see p. 684 Equation (1) FORMULA T(n, k) = k / 2 if k is even, n - (k - 1) / 2 if k is odd where 0 < k <= n are integers. - Michael Somos, Apr 21 2011 (Conjecture) Define the Chebyshev polynomials of the second kind by U_0(t) = 1, U_1(t) = 2*t, and U_r(t) = 2*t*U_(r-1)(t) - U_(r-2)(t) (r>1). Then T(n,k) = Sum_{j=1..n} U_(k-1)(cos((2*j-1)*Pi/(2*n+1))), 1<=k<=n. - L. Edson Jeffery, Jan 09 2012 (See the Sep 14 2016 comment above.) From Boris Putievskiy, Jan 10 2013: (Start) a(n) = -(A004736(n)+(A002260(n)-1)/2)*((-1)^A002260(n)-1)/2+(A002260(n)/2)*((-1)^A002260(n)+1)/2. a(n) = -(j+(i-1)/2)*((-1)^i-1)/2+(i/2)*((-1)^i+1)/2, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2). (End) EXAMPLE Formatted as a triangle T(n, k) (see Michael Somos' formula): n, 2n+1\k 1 2  3 4  5 6  7 8  9 10 11 12 .. 1,   3:   1 2,   5:   2 1 3,   7:   3 1  2 4,   9:   4 1  3 2 5,  11:   5 1  4 2  3 6,  13:   6 1  5 2  4 3 7,  15:   7 1  6 2  5 3  4 8,  17:   8 1  7 2  6 3  5 4 9,  19:   9 1  8 2  7 3  6 4  5 10, 21:  10 1  9 2  8 3  7 4  6  5 11, 23:  11 1 10 2  9 3  8 4  7  5  6 12, 25:  12 1 11 2 10 3  9 4  8  5  7  6 ... formatted by Wolfdieter Lang, Aug 28 2016 n=4: sin identity: sin(Pi*k/9)  =  sin(2*Pi*T(4, k))/9), for k =1, ..., n. That is: sin(Pi*1/9) = sin(2*Pi*4/9)  =  sin(Pi*(1 - 8/9), sin(Pi*3/9) = sin(2*Pi*3/9) = sin(Pi*(1 - 6/9)). For even k this is trivial. - Wolfdieter Lang, Aug 28 2016 MATHEMATICA Table[If[OddQ@ k, n - (k - 1)/2, k/2], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Aug 28 2016 *) PROG (PARI) {T(n, k) = if( k<1 | k>n, 0, if( k%2, n - (k - 1) / 2, k / 2))} /* Michael Somos, Apr 21 2011 */ CROSSREFS Cf. A057058, A194982; related to A141419. Sequence in context: A301983 A165416 A222818 * A346795 A169896 A210208 Adjacent sequences:  A057056 A057057 A057058 * A057060 A057061 A057062 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 30 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)