The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057009 Number of conjugacy classes of subgroups of index 3 in free group of rank n. 0
 1, 7, 41, 235, 1361, 7987, 47321, 281995, 1685921, 10096867, 60524201, 362972155, 2177309681, 13062280147, 78368930681, 470199300715, 2821152888641, 16926788453827, 101560343826761, 609360901747675, 3656161925798801, 21936961098633907, 131621735219132441 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Starting at a(2), consider that 2/3 - 1/2 = 1/6 with 1+6=7=a(2); 8/9 - 3/4 = 5/36 with 5+36=41=a(3); 26/27 - 7/8=19/216 with 19+216=235=a(4); 80/81 - 15/16=65/1296 with 65+1296=1361=a(5) and so forth. The numerators starting at a(3) are 5,19,65,211,665,2059,6305,... (see A001047) with 19 mod 5=4, 65 mod 19=8, 211 mod 65=16, 665 mod 211=32, 2059 mod 665=64, 6305 mod 2059=128, and so forth for higher powers of 2. - J. M. Bergot, May 09 2015 In other words, let f(n) = (3^(n-1)-1)/3^(n-1) - (2^(n-1)-1)/2^(n-1), then for n>=1 a(n) = numerator(f(n)) + denominator(f(n)). - Michel Marcus, May 29 2015 REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112. LINKS J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Th., 23 (1996), 105-109. J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3. V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applic. Math., 52 (1998), 91-120. Index entries for linear recurrences with constant coefficients, signature (11,-36,36). FORMULA G.f.: x(1-4x)/((1-2x)(1-3x)(1-6x)). a(n) = 6^(n-1)+3^(n-1)-2^(n-1). E.g.f.: e^(6*x)+e^(3*x)-e^(2*x). [Mohammad K. Azarian, Jan 16 2009] a(1)=1, a(2)=7, a(3)=41, a(n) = 11*a(n-1)-36*a(n-2)+36*a(n-3). [Harvey P. Dale, Nov 24 2011] MATHEMATICA Table[6^(n-1)+3^(n-1)-2^(n-1), {n, 25}] (* or *) LinearRecurrence[ {11, -36, 36}, {1, 7, 41}, 25] (* Harvey P. Dale, Nov 24 2011 *) CoefficientList[Series[(1 - 4 x)/((1 - 2 x) (1 - 3 x) (1 - 6 x)), {x, 0, 33}], x] (* Vincenzo Librandi, May 12 2015 *) PROG (PARI) a(n)=if(n<0, 0, 6^(n-1)+3^(n-1)-2^(n-1)) (MAGMA) [6^(n-1)+3^(n-1)-2^(n-1): n in [1..30]] /* or */ I:=[1, 7, 41]; [n le 3 select I[n] else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 12 2015 CROSSREFS Cf. A057004, A057005, A057006, A057007, A057008, A057010, A057011, A057012, A057013. Sequence in context: A152268 A026002 A173409 * A140480 A327055 A002315 Adjacent sequences:  A057006 A057007 A057008 * A057010 A057011 A057012 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 09 2000 EXTENSIONS More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 10:26 EST 2020. Contains 338612 sequences. (Running on oeis4.)