This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056986 Number of permutations on {1,...,n} containing any given pattern alpha in the symmetric group S_3. 125
 0, 0, 1, 10, 78, 588, 4611, 38890, 358018, 3612004, 39858014, 478793588, 6226277900, 87175616760, 1307664673155, 20922754530330, 355687298451210, 6402373228089300, 121645098641568810, 2432902001612519580, 51090942147243172980, 1124000727686125116360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS This is well-defined because for all patterns alpha in S_3 the number of permutations in S_n avoiding alpha is the same (the Catalan numbers). - Emeric Deutsch, May 05 2008 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..170 R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, pp. 383-406, 1985. Eric Weisstein's World of Mathematics, Permutation Pattern FORMULA a(n) = A214152(n,3) = A000142(n)-A000108(n) = A000142(n)-A214015(n,2). - Alois P. Heinz, Jul 05 2012 E.g.f.: 1/(1 - x) - exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)). - Ilya Gutkovskiy, Jan 21 2017 EXAMPLE a(4) = 10 because, taking, for example, the pattern alpha=321, we have 3214, 3241, 1432, 2431, 3421, 4213, 4132, 4231, 4312 and 4321. MAPLE a:= n-> n! -binomial(2*n, n)/(n+1): seq(a(n), n=1..25);  # Alois P. Heinz, Jul 05 2012 MATHEMATICA n!-Binomial[2n, n]/(n+1) PROG (PARI) a(n)=n!-binomial(n+n, n+1)/n \\ Charles R Greathouse IV, Jun 10 2011 CROSSREFS Cf. A000108, A000142, A138159, A214015, A214152. Sequence in context: A082136 A153596 A316595 * A243247 A222701 A283658 Adjacent sequences:  A056983 A056984 A056985 * A056987 A056988 A056989 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 23:01 EDT 2019. Contains 326314 sequences. (Running on oeis4.)