

A056913


Odd squarefree numbers for which the number of prime divisors is even.


9



1, 15, 21, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 301, 303
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Liouville function lambda(n) (A008836) is positive.
From Peter Munn, Jan 16 2020: (Start)
The sequence is closed under the commutative binary operation A059897(.,.). As integers are selfinverse under A059897, it forms a subgroup of the positive integers considered as a group under A059897.
This sequence is the intersection of A000379 and A056911, which are also subgroups of the positive integers under A059897.
(End)
The asymptotic density of this sequence is 2/Pi^2 (A185197).  Amiram Eldar, Oct 06 2020


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
H. Gupta, A formula for L(n), J. Indian Math. Soc., 7 (1943), 6871. [Annotated scanned copy]


MATHEMATICA

f[n_]:=Last/@FactorInteger[n]=={1, 1}&&FactorInteger[n][[1, 1]]>2; a=6; lst={1}; Do[If[f[n], AppendTo[lst, n]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
Select[Range[1, 303, 2], MoebiusMu[#] == 1 &] (* Amiram Eldar, Oct 06 2020 *)


PROG

(PARI) list(lim)=my(v=List([1])); forfactored(n=15, lim\1, if(n[2][1, 1]>2 && vecmax(n[2][, 2])==1 && #(n[2][, 2])%2==0, listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
(MAGMA) [k:k in [1..303 by 2] IsSquarefree(k) and IsEven(#PrimeDivisors(k))]; // Marius A. Burtea, Jan 21 2020


CROSSREFS

Intersection of A056911 with either of A000379, A028260.
Cf. A056912, A059897, A008836, A026424, A185197.
Sequence in context: A146166 A024556 A046388 * A002557 A128907 A321644
Adjacent sequences: A056910 A056911 A056912 * A056914 A056915 A056916


KEYWORD

easy,nonn


AUTHOR

James A. Sellers, Jul 07 2000


STATUS

approved



