This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056899 Primes of the form n^2+2. 51
 2, 3, 11, 83, 227, 443, 1091, 1523, 2027, 3251, 6563, 9803, 11027, 12323, 13691, 15131, 21611, 29243, 47963, 50627, 56171, 59051, 62003, 65027, 74531, 88211, 91811, 95483, 103043, 119027, 123203, 131771, 136163, 140627, 149771, 173891 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, primes of the form n^2 - 2n + 3. Note that all terms after the first two are equal to 11 modulo 72 and that (a(n)-11)/72 is a triangular number, since they have to be 2 more than the square of an odd multiple of 3 to be prime and if k=6m+3 then a(n)=k^2+2=72m(m+1)/2+11. The quotient cycle length is 2 in the continued fraction expansion of sqrt(p) for these primes. E.g.: cfrac(sqrt(6563),6)= 81+1/(81+1/(162+1/(81+1/(162+1/(81+1/(162+`...`)))))). - Labos Elemer, Feb 22 2001 Primes in A059100; except for a(2)=3 a subsequence of A007491 and congruent to 2 modulo 9. For n>2, a(n)=11 (mod 72). [M. F. Hasler, Apr 05 2009] REFERENCES M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988 Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Near-Square Prime FORMULA For n>1, a(n) = 72*A000217(A056900(n-2))+11 a(n) = A067201(n)^2+2. [M. F. Hasler, Apr 05 2009] MAPLE select(isprime, [seq(t^2+2, t = 0..1000)]); # Robert Israel, Sep 03 2015 MATHEMATICA Intersection[Table[n^2+2, {n, 0, 10^2}], Prime[Range[9*10^3]]] ...or... For[i=2, i<=2, a={}; Do[If[PrimeQ[n^2+i], AppendTo[a, n^2+i]], {n, 0, 100}]; Print["n^2+", i, ", ", a]; i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *) Select[ Range[0, 500]^2 + 2, PrimeQ] (* Robert G. Wilson v, Sep 03 2015 *) PROG (MAGMA) [n: n in PrimesUpTo(175000) | IsSquare(n-2)];  // Bruno Berselli, Apr 05 2011 (MAGMA) [ a: n in [0..450] | IsPrime(a) where a is n^2 +2 ]; // Vincenzo Librandi, Apr 06 2011 (PARI) print1("2, 3"); forstep(n=3, 1e4, 6, if(isprime(t=n^2+2), print1(", "t))) \\ Charles R Greathouse IV, Jul 19 2011 CROSSREFS Intersection of A146327 and A000040; intersection of A059100 and A000040. Cf. A002496. Sequence in context: A290512 A042165 A089921 * A117699 A065378 A161721 Adjacent sequences:  A056896 A056897 A056898 * A056900 A056901 A056902 KEYWORD nonn AUTHOR Henry Bottomley, Jul 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 05:56 EDT 2018. Contains 316202 sequences. (Running on oeis4.)