%I
%S 3,5,11,23,31,37,47,53,59,67,71,89,97,103,113,137,157,163,179,181,191,
%T 199,223,229,251,257,269,311,313,317,331,353,367,379,383,389,397,401,
%U 419,421,433,443,449,463,467,487,499,509,521,577,587,599
%N Primes of form x^2+xy+3y^2, discriminant 11.
%C Also, primes of form (x^2+11*y^2)/4.
%C Also, primes of the form x^2xy+3y^2 with x and y nonnegative.  _T. D. Noe_, May 07 2005
%C Primes congruent to 0, 1, 3, 4, 5 or 9 (mod 11). As this discriminant has class number 1, all binary quadratic forms ax^2+bxy+cy^2 with b^24ac=11 represent these primes.  _Rick L. Shepherd_, Jul 25 2014
%C Also, primes which are squares (mod 11) (or, (mod 22), cf. A191020).  _M. F. Hasler_, Jan 15 2016
%C Also, primes p such that Legendre(11,p) = 0 or 1.  _N. J. A. Sloane_, Dec 25 2017
%H Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, <a href="/A056874/b056874.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi, next 4000 terms from N. J. A. Sloane]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[1, 1, 3, 100000] (* see A106856 *)
%o (PARI)
%o { fc2(a,b,c,M) = my(p,t1,t2,n);
%o m = 0;
%o for(n=1,M, p = prime(n);
%o t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, m++; print(m," ",p )));
%o }
%o fc2(1,1,3,10703);
%Y Cf. A002346 and A002347 for values of x and y.
%Y Primes in A028954.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_, Sep 02 2000
%E Edited by _N. J. A. Sloane_, Jun 01 2014 and Jun 16 2014
