login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056860 Triangle T(n,k) = number of element-subset partitions of {1..n} with n-k+1 equalities (n >= 1, 1 <= k <= n). 7
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 20, 15, 1, 5, 20, 50, 75, 52, 1, 6, 30, 100, 225, 312, 203, 1, 7, 42, 175, 525, 1092, 1421, 877, 1, 8, 56, 280, 1050, 2912, 5684, 7016, 4140, 1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

T(n,k) = number of permutations on [n] with n in position k in which 321 patterns only occur as part of 3241 patterns. Example: T(4,2)=3 counts 1423, 2413, 3412. - David Callan, Jul 20 2005

From Gary W. Adamson, Feb 24 2011: (Start)

Given rows of an array such that n-th row is the eigensequence of an infinite lower triangular matrix with first n columns of Pascal's triangle and the rest zeros. The reoriented finite differences of the array starting from the top are the rows of A056860.

The first few rows of the array are

  1,   1,   1,   1,   1,   1, ...

  1,   2,   3,   4,   5,   6, ...

  1,   2,   5,  10,  17,  26, ...

  1,   2,   5,  15,  37,  76, ...

  1,   2,   5,  15,  52, 151, ...

  ...

(End)

REFERENCES

W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000.

LINKS

Table of n, a(n) for n=1..55.

David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.

FORMULA

T(n, k) = binomial(n-1, k-1)*B(k-1) where B denotes the Bell numbers A000110. - David Callan, Jul 20 2005

EXAMPLE

T(n,k) starts:

  1;

  1, 1;

  1, 2,  2;

  1, 3,  6,   5;

  1, 4, 12,  20,   15;

  1, 5, 20,  50,   75,   52;

  1, 6, 30, 100,  225,  312,   203;

  1, 7, 42, 175,  525, 1092,  1421,   877;

  1, 8, 56, 280, 1050, 2912,  5684,  7016,  4140;

  1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147;

Building row sums Sum_{c=1..k} T(n,c), the following array results:

  1, 1,  1,   1,    1,    1,    1,     1,     1,     1, ...

  1, 2,  2,   2,    2,    2,    2,     2,     2,     2, ...

  1, 3,  5,   5,    5,    5,    5,     5,     5,     5, ...

  1, 4, 10,  15,   15,   15,   15,    15,    15,    15, ...

  1, 5, 17,  37,   52,   52,   52,    52,    52,    52, ...

  1, 6, 26,  76,  151,  203,  203,   203,   203,   203, ...

  1, 7, 37, 137,  362,  674,  877,   877,   877,   877, ...

  1, 8, 50, 225,  750, 1842, 3263,  4140,  4140,  4140, ...

  1, 9, 65, 345, 1395, 4307, 9991, 17007, 21147, 21147, ...

CROSSREFS

Essentially same as A056857, where rows are read from left to right.

T(2n+1,n+1) gives A124102.

T(2n,n) gives A297926.

Sequence in context: A330965 A098474 A153199 * A158825 A247507 A107111

Adjacent sequences:  A056857 A056858 A056859 * A056861 A056862 A056863

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane, Oct 13 2000

EXTENSIONS

More terms from David Callan, Jul 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 16:20 EDT 2020. Contains 337383 sequences. (Running on oeis4.)