This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056832 All a(n) = 1 or 2; a(1) = 1; get next 2^k terms by repeating first 2^k terms and changing last element so sum of first 2^(k+1) terms is odd. 11
 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Dekking (2016) calls this the Toeplitz sequence or period-doubling sequence. - N. J. A. Sloane, Nov 08 2016 Fixed point of the morphism 1->12 and 2->11 (1 ->12 ->1211 ->12111212 ->..). - Benoit Cloitre, May 31 2004 a(n) is multiplicative. - Christian G. Bower, Jun 03 2005 a(n) is the least k such that A010060(n-1+k)=1-A010060(n-1); the sequence {a(n+1)-1} is the characteristic sequence for A079523. - Vladimir Shevelev, Jun 22 2009 REFERENCES Karamanos, Kostas. "From symbolic dynamics to a digital approach." International Journal of Bifurcation and Chaos 11.06 (2001): 1683-1694. (Full version. See p. 1685) Karamanos, K. (2000). From symbolic dynamics to a digital approach: chaos and transcendence. In Michel Planat (Ed.), Noise, Oscillators and Algebraic Randomness (Lecture Notes in Physics, pp. 357-371). Springer, Berlin, Heidelberg. (Short version. See p. 359) M. R. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, NY, 1991; pp. 277-279. M. R. Schroeder, Letter to N. J. A. Sloane, May 05 1994. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1. A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159. M. R. Schroeder, Letter to N. J. A. Sloane, May 05 1994. FORMULA a(n) = ((-1)^(n+1)*A002425(n)) modulo 3. - Benoit Cloitre, Dec 30 2003 a(1)=1, a(n) = 1 + {sum(i=1, n-1, a(i)*a(n-i)) mod 2}. - Benoit Cloitre, Mar 16 2004 a(n) is multiplicative with a(2^e)=1+(1-(-1)^e)/2, a(p^e)=1 if p>2. - Michael Somos, Jun 18 2005 [a(2^n+1) .. a(2^(n+1)-1)] = [a(1) .. a(2^n-1)]; a(2^(n+1))=3-a(2^n). For n>0, a(n) = 2-A035263(n). - Benoit Cloitre, Nov 24 2002 a(n)=2 if n-1 is in A079523; a(n)=1 otherwise. - Vladimir Shevelev, Jun 22 2009 a(n) = A096268(n-1) + 1. - Reinhard Zumkeller, Jul 29 2014 EXAMPLE 1 -> 1,2 -> 1,2,1,1 -> 1,2,1,1,1,2,1,2 -> 1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1. Here we have 1 element, then 2 elements, then 4, 8, 16, etc. MATHEMATICA Nest[ Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {1, 1}})]}], {1}, 7] (* Robert G. Wilson v, Mar 03 2005 *) Table[Mod[-(-1)^(n + 1) (-1)^n Numerator[EulerE[2 n + 1, 1]], 3] , {n, 0, 120}] (* Michael De Vlieger, Aug 15 2016, after Jean-François Alcover at A002425 *) PROG (PARI) a(n)=numerator(2/n*(4^n-1)*bernfrac(2*n))%3 (PARI) a(n)=if(n<1, 0, valuation(n, 2)%2+1) /* Michael Somos, Jun 18 2005 */ (Haskell) a056832 n = a056832_list !! (n-1) a056832_list = 1 : f [1] where    f xs = y : f (y : xs) where           y = 1 + sum (zipWith (*) xs \$ reverse xs) `mod` 2 -- Reinhard Zumkeller, Jul 29 2014 CROSSREFS Cf. A197911 (partial sums). Essentially same as first differences of Thue-Morse, A010060. - N. J. A. Sloane, Jul 02 2015 See A035263 for an equivalent version. See also A002425, A079523, A096268. Limit of A317956(n) for large n. Sequence in context: A322028 A079806 A045887 * A105931 A279495 A300409 Adjacent sequences:  A056829 A056830 A056831 * A056833 A056834 A056835 KEYWORD easy,nonn,nice,mult AUTHOR Jonas Wallgren, Aug 30 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 19:48 EDT 2019. Contains 327981 sequences. (Running on oeis4.)