%I #18 Jun 26 2017 10:21:01
%S 2,5,31,283,3381,49781,870199,17600759,404197705,10387420489,
%T 295311670611,9201412118867,311791207040509,11414881932150269,
%U 449005897206417391,18884637964090410991,845687005960046315793
%N a(n) = n^n + (n-1)^(n-1).
%C For even n > 1, the absolute value of the discriminant of the polynomial x^n+x-1. [Corrected by _Artur Jasinski_, May 07 2010]
%C The largest known prime in this sequence is a(4) = 283.
%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).
%H Walter Nissen, <a href="http://upforthecount.com/math/nnpomega.html">post on np ( n ) = n^n + (n+1)^(n+1)</a>, on home page <a href="http://upforthecount.com">"Up for the count!"</a>. (Updated Oct 02 2012)
%e a(3) = 2^2 + 3^3 = 4 + 27 = 31.
%t Join[{2}, Table[n^n+(n-1)^(n-1), {n, 2, 20}]] (* _T. D. Noe_, Aug 13 2004 *)
%t Join[{2},Total/@Partition[Table[n^n,{n,20}],2,1]] (* _Harvey P. Dale_, Jun 26 2017 *)
%o (PARI) A056788(n)=n^n+(n-1)^(n-1) \\ _M. F. Hasler_, Oct 02 2012
%Y Cf. A000312 (n^n), A086797 (discriminant of the polynomial x^n-x-1).
%Y Cf. A056187, A056790, A192397 (smallest & largest prime factor of a(n), records of the latter), A217435 = bigomega(a(n)).
%K nonn
%O 1,1
%A _Walter Nissen_, Aug 20 2000
%E Minor corrections by _M. F. Hasler_, Oct 02 2012