login
A056739
Numbers n such that n | 10^n + 9^n + 8^n + 7^n + 6^n + 5^n + 4^n + 3^n + 2^n + 1^n.
0
1, 5, 11, 25, 55, 121, 125, 275, 365, 605, 625, 925, 1331, 1375, 2365, 3025, 3125, 6655, 6875, 14641, 15125, 15625, 22625, 27565, 32125, 33275, 34375, 73205, 75625, 78125, 123365, 161051, 166375, 171875, 366025, 378125, 390625, 541717, 660605
OFFSET
1,2
COMMENTS
Contains A003598. In general n=p^iq^i => n|Sum[k=1..2p, k^n], where p, q=2p+1 prime (see Meyer ref).
MATHEMATICA
Do[ If[ Mod[ PowerMod[ 10, n, n ] + PowerMod[ 9, n, n ] + PowerMod[ 8, n, n ] + PowerMod[ 7, n, n ] + PowerMod[ 6, n, n ] + PowerMod[ 5, n, n ] + PowerMod[ 4, n, n ] + PowerMod[ 3, n, n ] + PowerMod[ 2, n, n ] + 1, n ] == 0, Print[ n ] ], {n, 1, 10^6} ]
Select[Range[700000], Divisible[Total[Range[10]^#], #]&] (* Harvey P. Dale, Nov 24 2014 *)
Select[Range[700000], Mod[Total[PowerMod[Range[10], #, #]], #]==0&] (* Harvey P. Dale, Feb 23 2023 *)
CROSSREFS
Cf. A001557.
Sequence in context: A376763 A084640 A337481 * A003598 A014858 A355243
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 25 2000
STATUS
approved