%I #37 Aug 26 2023 15:03:26
%S 1,1,2,3,6,10,30,105,70,42,210,2310,2310,4290,6006,15015,30030,170170,
%T 510510,1939938,1385670,881790,9699690,223092870,44618574,17160990,
%U 74364290,31870410,223092870,6469693230,6469693230,100280245065
%N Squarefree kernel of lcm(binomial(n,0), ..., binomial(n,n)).
%C Also squarefree kernel of A001142; row products in table A256113. - _Reinhard Zumkeller_, Mar 21 2015
%C a(2372) has 1001 decimal digits. - _Michael De Vlieger_, Jul 14 2017
%C Also the squarefree kernel of the cumulative product of n^n/n!. - _Peter Luschny_, Dec 21 2019
%C Conjecture: the few odd values belong to A070826. - _Bill McEachen_, Jun 24 2023
%C And their indices appear to be A007053. - _Michel Marcus_, Jul 01 2023
%H Michael De Vlieger, <a href="/A056606/b056606.txt">Table of n, a(n) for n = 0..2371</a>
%F a(n) = A007947(A002944(n+1)). - _Michel Marcus_, Dec 21 2019
%F a(n) = radical(hyperfactorial(n)/superfactorial(n)) = A007947(A002109(n)/ A000178(n)) for n >= 0. - _Peter Luschny_, Dec 21 2019
%e a(7) = 105 because lcm(1, 7, 21, 35) = 105 is already squarefree.
%e a(0) = 1 because n^n/n! = 1 for the integer n = 0. - _Peter Luschny_, Dec 21 2019
%p h := n -> mul(k^k/factorial(k), k=0..n):
%p rad := n -> mul(k, k = numtheory[factorset](n)):
%p seq(rad(h(n)), n=0..31); # _Peter Luschny_, Dec 21 2019
%t Table[Apply[Times, FactorInteger[Product[k^(2 k - 1 - n), {k, n}]][[All, 1]]], {n, 0, 31}] (* or *)
%t Table[Apply[Times, FactorInteger[Apply[LCM, Range@ n]/n][[All, 1]]], {n, 1, 32}] (* _Michael De Vlieger_, Jul 14 2017 *)
%o (Haskell)
%o a056606 = a007947 . a001142 -- _Reinhard Zumkeller_, Mar 21 2015
%o (PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947
%o a(n) = rad(lcm(vector(n+1, k, binomial(n,k-1)))); \\ _Michel Marcus_, Jun 24 2023
%Y Cf. A002944, A034386, A048633, A003418, A000142, A001405.
%Y Cf. A007947, A001142, A256113, A002109, A000178, A329947.
%Y Cf. A070826.
%K nonn
%O 0,3
%A _Labos Elemer_, Aug 07 2000
%E Extended with a(0) = 1 by _Peter Luschny_, Dec 21 2019