OFFSET
2,3
COMMENTS
Sequence could be defined as: a(2) = 1, a(4) = 4, a(8) = 65536, a(9) = 19683; if p an odd prime: a(p) = 1 and a(2p) = (4p)^p; otherwise if n > 1: a(n) = n^n.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 2..200
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
FORMULA
EXAMPLE
a(6) = gcd(46656, 86400000) = 1728.
PROG
(Python)
from gmpy2 import gcd
A056582_list, n = [], 1
for i in range(2, 201):
m = i**i
A056582_list.append(int(gcd(n, m)))
n *= m # Chai Wah Wu, Aug 21 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jul 03 2000
STATUS
approved