The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056582 Highest common factor (or GCD) of n^n and hyperfactorial(n-1), i.e., gcd(n^n, product(k^k) for k < n). 3
 1, 1, 4, 1, 1728, 1, 65536, 19683, 3200000, 1, 8916100448256, 1, 13492928512, 437893890380859375, 18446744073709551616, 1, 39346408075296537575424, 1, 104857600000000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Sequence could be defined as: a(2) = 1, a(4) = 4, a(8) = 65536, a(9) = 19683; if p an odd prime: a(p) = 1 and a(2p) = (4p)^p; otherwise if n > 1: a(n) = n^n. LINKS Chai Wah Wu, Table of n, a(n) for n = 2..200 Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537.  Zbl 1133.11012. FORMULA a(n) = GCD(A000312(n), A002109(n-1)). Except for n = 4, a(n) = A056583(n)^A056584(n) = A056583(n)^(n^2/A056583(n)) = (n^2/A056584(n))^A056584(n). EXAMPLE a(6) = gcd(46656, 86400000) = 1728. PROG (Python) from gmpy2 import gcd A056582_list, n = [], 1 for i in range(2, 201):     m = i**i     A056582_list.append(int(gcd(n, m)))     n *= m # Chai Wah Wu, Aug 21 2015 CROSSREFS Sequence in context: A038019 A164804 A036115 * A167891 A105087 A238012 Adjacent sequences:  A056579 A056580 A056581 * A056583 A056584 A056585 KEYWORD nonn,easy AUTHOR Henry Bottomley, Jul 03 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 04:39 EDT 2020. Contains 336319 sequences. (Running on oeis4.)