login
A056579
1+2n+3n^2+4n^3+5n^4.
9
1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, 35983, 54321, 78915, 111049, 152127, 203673, 267331, 344865, 438159, 549217, 680163, 833241, 1010815, 1215369, 1449507, 1715953, 2017551, 2357265, 2738179, 3163497, 3636543
OFFSET
0,2
FORMULA
a(n) =(A053700(n+1)-A053700(n-1))/2-10n^2-4n-2.
G.f.: -(3*x^4+42*x^3+64*x^2+10*x+1) / (x-1)^5. - Colin Barker, May 04 2013
EXAMPLE
For n>5 this is 54321 translated from base n to base 10
MATHEMATICA
Join[{1}, Table[Total[Table[i n^(i-1), {i, 5}]], {n, 30}]] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 15, 129, 547, 1593}, 30] (* Harvey P. Dale, Sep 20 2017 *)
PROG
(PARI) a(n)=1+2*n+3*n^2+4*n^3+5*n^4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Note: 1+2x+3x^2+4x^3+5x^4 is derivative of 1+x+x^2+x^3+x^4 +x^5, i.e. A053700. Cf. A000012, A005408, A056109, A056578.
Sequence in context: A283120 A209404 A127595 * A294054 A156922 A271791
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 29 2000
STATUS
approved