%I #38 Sep 30 2023 06:20:44
%S 1,89,12816,1493064,187628376,22890661872,2824135408458,
%T 346934172869802,42689423937884208,5249543573067466872,
%U 645693859487298425256,79413089729752455762384,9767258556969762111163771,1201288963378036364032704659,147748983166877427393815516256
%N Fibonomial coefficients.
%H Alois P. Heinz, <a href="/A056568/b056568.txt">Table of n, a(n) for n = 0..150</a>
%F a(n) = A010048(n+10,10) =: Fibonomial(n+10,10).
%F G.f.: 1/p(11,n) with p(11,n) = 1-89*x -4895*x^2 +83215*x^3 +582505*x^4 -1514513*x^5 -1514513*x^6 +582505*x^7 +83215*x^8 -4895*x^9 -89*x^10 +x^11 = (1+x) *(1-3*x+x^2) *(1+7*x+x^2) *(1-18*x+x^2) *(1+47*x+x^2) *(1-123*x+x^2) (n=8 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
%F Recursion: a(n)=123*a(n-1)-a(n-2)+((-1)^n)*A056566(n), n >= 2, a(0)=1, a(1)=89.
%p F:= combinat[fibonacci]: a:= n-> mul(F(n+i), i=0..9)/122522400: seq(a(n), n=1..18); # _Zerinvary Lajos_, Oct 07 2007
%p a:= n-> (Matrix(11, (i,j)-> if (i=j-1) then 1 elif j=1 then [1514513, -582505, -83215, 4895, 89, -1][abs(i-11/2)+1/2] else 0 fi)^n)[1, 1]; seq(a(n), n=0..18); # _Alois P. Heinz_, Aug 15 2008
%t f[n_]:=Fibonacci[n] *Fibonacci[n+1] *Fibonacci[n+2] *Fibonacci[n+3] *Fibonacci[n+4] *Fibonacci[n+5] *Fibonacci[n+6] *Fibonacci[n+7] *Fibonacci[n+8] *Fibonacci[n+9]; lst={}; Do[AppendTo[lst,f[n]/122522400],{n,0,5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 12 2010 *)
%t Times@@@Partition[Fibonacci[Range[30]],10,1]/122522400 (* _Harvey P. Dale_, Jul 27 2019 *)
%o (Magma) [&*[Fibonacci(n+i): i in [0..9]]/122522400: n in [1..15]]; // _Vincenzo Librandi_, Oct 31 2014
%o (PARI) a(n)=prod(k=0,9,fibonacci(n+k))/122522400; \\ _Joerg Arndt_, Oct 31 2014
%Y Cf. A010048, A000045, A001654-8, A056565-7, A001906, A004187 (signed), A049660, A049668 (signed), A049670.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Jul 10 2000