login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056493 Number of primitive (period n) periodic palindromes using a maximum of two different symbols. 3
2, 1, 2, 3, 6, 7, 14, 18, 28, 39, 62, 81, 126, 175, 246, 360, 510, 728, 1022, 1485, 2030, 3007, 4094, 6030, 8184, 12159, 16352, 24381, 32766, 48849, 65534, 97920, 131006, 196095, 262122, 392364, 524286, 785407, 1048446, 1571310, 2097150, 3143497 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.

Also number of aperiodic necklaces (Lyndon words) with two colors that are the same when turned over.

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia.

LINKS

Table of n, a(n) for n=1..42.

Index entries for sequences related to Lyndon words

FORMULA

Sum mu(d)*A029744(n/d) where d divides n.

From Herbert Kociemba, Nov 29 2016: (Start)

More generally, gf(k) is the g.f. for the number of necklaces with reflectional symmetry but no rotational symmetry and beads of k colors.

gf(k): Sum_{n>=1} mu(n)*Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)). (End)

EXAMPLE

a(1) = 2 with aaa... and bbb..., a(2) = 1 with ababab..., a(3) = 2 with aabaab... and abbabb...., a(4) = 3 with aaabaaab... and aabbaabb... and abbbabbb.... - Michael Somos, Nov 29 2016

MATHEMATICA

mx=40; gf[x_, k_]:=Sum[ MoebiusMu[n]*Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/( 1-k x^(2n)), {n, mx}]; CoefficientList[Series[gf[x, 2], {x, 0, mx}], x] (* Herbert Kociemba, Nov 29 2016 *)

CROSSREFS

Cf. A056458.

Sequence in context: A108618 A097719 A249050 * A277619 A001371 A277629

Adjacent sequences:  A056490 A056491 A056492 * A056494 A056495 A056496

KEYWORD

nonn,changed

AUTHOR

Marks R. Nester (nesterm(AT)dpi.qld.gov.au)

EXTENSIONS

More terms and additional comments from Christian G. Bower, Jun 22 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 03:42 EST 2016. Contains 278993 sequences.