OFFSET
1,10
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..500
Index entries for linear recurrences with constant coefficients, signature (1,20,-20,-155,155,580,-580,-1044, 1044,720,-720).
FORMULA
G.f.: 360*x^10*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)*(6*x^2-1)). - Colin Barker, Jul 08 2012
a(n) = (k!/2)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), with k=6 different colors used and where S2(n,k) is the Stirling subset number A008277. - Robert A. Russell, Jun 05 2018
a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - 155*a(n-4) + 155*a(n-5) + 580*a(n-6) - 580*a(n-7) - 1044*a(n-8) + 1044*a(n-9) + 720*a(n-10) - 720*a(n-11). - Muniru A Asiru, Sep 26 2018
EXAMPLE
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
There are 720 permutations of the six letters used in ABACDEFEDC. These 720 arrangements can be paired up with a half turn (e.g., ABACDEFEDC-EFEDCABACD) to arrive at the 360 arrangements for n=10.
MAPLE
with(combinat): a:=n->(factorial(6)/2)*(Stirling2(floor((n+1)/2), 6)+Stirling2(ceil((n+1)/2), 6)): seq(a(n), n=1..35); # Muniru A Asiru, Sep 26 2018
MATHEMATICA
k = 6; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1, 20, -20, -155, 155, 580, -580, -1044, 1044, 720, -720}, Join[Table[0, {9}], {360, 720}], 40] (* Robert A. Russell, Sep 29 2018 *)
PROG
(PARI) a(n) = my(k=6); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
(GAP) a:=[0, 0, 0, 0, 0, 0, 0, 0, 0, 360, 720];; for n in [12..35] do a[n]:=a[n-1] +20*a[n-2]-20*a[n-3]-155*a[n-4]+155*a[n-5]+580*a[n-6] -580*a[n-7] -1044*a[n-8]+1044*a[n-9]+720*a[n-10]-720*a[n-11]; od; a; # Muniru A Asiru, Sep 26 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!(360*x^10*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)*(6*x^2-1)))); // G. C. Greubel, Oct 13 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved