The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056488 Number of periodic palindromes using a maximum of six different symbols. 5
 6, 21, 36, 126, 216, 756, 1296, 4536, 7776, 27216, 46656, 163296, 279936, 979776, 1679616, 5878656, 10077696, 35271936, 60466176, 211631616, 362797056, 1269789696, 2176782336, 7618738176, 13060694016, 45712429056, 78364164096, 274274574336, 470184984576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also number of necklaces with n beads and 6 colors that are the same when turned over and hence have reflection symmetry. - Herbert Kociemba, Nov 24 2016 REFERENCES M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,6). FORMULA a(n) = 6^((n+1)/2) for n odd, a(n) = 6^(n/2)*7/2 for n even. From Colin Barker, Jul 08 2012: (Start) a(n) = 6*a(n-2). G.f.: 3*x*(2+7*x)/(1-6*x^2). (End) a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 2, where k = 6 is the number of possible colors. - Robert A. Russell, Sep 22 2018 EXAMPLE G.f. = 6*x + 21*x^2 + 36*x^3 + 126*x^4 + 216*x^5 + 756*x^6 + 1296*x^7 + ... For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. MATHEMATICA LinearRecurrence[{0, 6}, {6, 21}, 30] (* Harvey P. Dale, Feb 02 2015 *) k = 6; Table[(k^Floor[(n + 1)/2] + k^Ceiling[(n + 1)/2]) / 2, {n, 30}] (* Robert A. Russell, Sep 21 2018 *) If[EvenQ[#], 6^(# / 2) 7/2, 6^((# + 1) / 2)]&/@Range[30] (* Vincenzo Librandi, Sep 22 2018 *) PROG (PARI) a(n) = if(n%2, 6^((n+1)/2), 7*6^(n/2)/2); \\ Altug Alkan, Sep 21 2018 (Magma) [IsEven(n) select 6^(n div 2)*7/2 else 6^((n+1) div 2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2018 CROSSREFS Column 6 of A284855. Cf. A029744, A038754, A056452. Sequence in context: A151943 A207339 A284988 * A031042 A064431 A031094 Adjacent sequences: A056485 A056486 A056487 * A056489 A056490 A056491 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Vincenzo Librandi, Sep 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 13:44 EST 2022. Contains 358510 sequences. (Running on oeis4.)