OFFSET
1,3
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = Sum_{d|n} mu(d)*A056453(n/d).
G.f.: Sum_{k>=1} mu(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)). - Andrew Howroyd, Sep 29 2019
PROG
(PARI) seq(n)={Vec(sum(k=1, n\3, moebius(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019
(Python)
from sympy import mobius, divisors
def A056463(n): return sum(mobius(n//d)*((1<<(d+1>>1))-2) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019
STATUS
approved