login
Number of primitive (period n) n-bead necklace structures using exactly two different colored beads.
7

%I #23 Aug 22 2017 20:53:08

%S 0,1,1,2,3,5,9,16,28,51,93,170,315,585,1091,2048,3855,7280,13797,

%T 26214,49929,95325,182361,349520,671088,1290555,2485504,4793490,

%U 9256395,17895679,34636833,67108864,130150493,252645135,490853403,954437120,1857283155

%N Number of primitive (period n) n-bead necklace structures using exactly two different colored beads.

%C Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

%C Identical to A000048 for n>1.

%C Number of binary Lyndon words of length n with an odd number of zeros. - _Joerg Arndt_, Oct 26 2015

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

%F a(n) = Sum mu(d)*A056295(n/d) where d divides n.

%F a(n) = A000048(n) - A000007(n-1).

%o (PARI) vector(100, n, sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)-!(n-1)) \\ _Altug Alkan_, Oct 26 2015

%o (Python)

%o from sympy import divisors, mobius

%o def a000048(n): return 1 if n<1 else sum([mobius(d)*2**(n/d) for d in divisors(n) if d%2 == 1])/(2*n)

%o def a(n): return a000048(n) - 0**(n - 1) # _Indranil Ghosh_, Apr 28 2017

%Y Column 2 of A107424.

%Y Cf. A000007, A000048, A001037, A056295.

%K nonn

%O 1,4

%A _Marks R. Nester_