login
A056298
Number of n-bead necklace structures using exactly five different colored beads.
5
0, 0, 0, 0, 1, 3, 20, 136, 773, 4281, 22430, 115100, 577577, 2863227, 14051164, 68515514, 332514803, 1608800691, 7767857090, 37460388596, 180536313547, 869901397479, 4192038616700, 20208367895980
OFFSET
1,6
COMMENTS
Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
FORMULA
a(n) = A056293(n) - A056292(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (S2(n/d+4,5) -
6*S2(n/d+3,5) + 11*S2(n/d+2,5) - 6*S2(n/d+1,5)) + [d==30 mod 60] *
(S2(n/d+4,5) - 8*S2(n/d+3,5) + 26*S2(n/d+2,5) - 43*S2(n/d+1,5) +
30*S2(n/d,5)) + [d==20 mod 60 | d==40 mod 60] * (S2(n/d+4,5) -
8*S2(n/d+3,5) + 23*S2(n/d+2,5) - 24*S2(n/d+1,5)) + [d==15 mod 60 |
d==45 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) + 38*S2(n/d+2,5) -
65*S2(n/d+1,5) + 45*S2(n/d,5)) + [d mod 60 in {12,24,36,48}] *
(4*S2(n/d+3,5) - 24*S2(n/d+2,5) + 44*S2(n/d+1,5) - 24*S2(n/d,5)) +
[d=10 mod 60 | d==50 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) +
38*S2(n/d+2,5) - 61*S2(n/d+1,5) + 30*S2(n/d,5)) + [d mod 60 in
{6,18,42,54}] * (2*S2(n/d+3,5) - 9*S2(n/d+2,5) + 7*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {5,25,35,55}] * (S2(n/d+4,5) -
10*S2(n/d+3,5) + 35*S2(n/d+2,5) - 50*S2(n/d+1,5) + 25*S2(n/d,5)) +
[d mod 60 in {4,8,16,28,32,44,52,56}] * (2*S2(n/d+3,5) - 12*S2(n/d+2,5) +
26*S2(n/d+1,5) - 24*S2(n/d,5)) + [d mod 60 in {3,9,21,27,33,39,51,57}] *
(3*S2(n/d+2,5) - 15*S2(n/d+1,5) + 21*S2(n/d,5)) + [d mod 60 in
{2,14,22,26,34,38,46,58}] * (3*S2(n/d+2,5) - 11*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,
59}] * S2(n/d,5)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * (log(1-4x^d) -
log(1-3x^d)) + [d==30 mod 60] * (3*log[1-5x^d) - 3*log(1-4x^d) +
log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (2*log(1-5x^d) -
2*log(1-4x^d) + log(1-2x^d) - log(1-x^d)) / 3 +
[d==15 mod 60 | d==45 mod 60] * (3*log(1-5x^d) - 3*log(1-4x^d) +
2*log(1-3x^d) - 2*log(1-2x^d) + 3*log(1-x^d)) / 8 + [d mod 60 in
{12,24,36,48}] * (4*log(1-5x^d) - 5*log(1-4x^d)) / 5 + [d=10 mod 60 |
d==50 mod 60] * (5*log(1-5x^d) - 5*log(1-4x^d) + 4*log(1-2x^d) -
log(1-x^d)) / 12 + [d mod 60 in {6,18,42,54}] * (11*log(1-5x^d) -
15*log(1-4x^d) + 5*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] *
(5*log(1-5x^d) - log(1-4x^d) + 2*log(1-3x^d) - 2*log(1-2x^d) +
log(1-x^d)) / 24 + [d mod 60 in {4,8,16,28,32,44,52,56}] *
(7*log(1-5x^d) - 10*log(1-4x^d) + 5*log(1-2x^d) - 5*log(1-x^d)) /
15 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (7*log(1-5x^d) -
15*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 15*log(1-x^d)) /
40 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (13*log(1-5x^d) -
25*log(1-4x^d) + 20*log(1-2x^d) - 5*log(1-x^d)) / 60 + [d mod 60 in
{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-5x^d) -
5*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 5*log(1-x^d)) / 120).
(End)
MATHEMATICA
From Robert A. Russell, May 29 2018: (Start)
Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 5],
{n, 1, 40}] (* after Gilbert and Riordan *)
Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], StirlingS2[n/#+4, 5] - 6 StirlingS2[n/#+3, 5] + 11 StirlingS2[n/#+2, 5] - 6 StirlingS2[n/#+1, 5], Divisible[#, 30], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 26 StirlingS2[n/#+2, 5] - 43 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 20], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 23 StirlingS2[n/#+2, 5] - 24 StirlingS2[n/#+1, 5], Divisible[#, 15], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 65 StirlingS2[n/#+1, 5] + 45 StirlingS2[n/#, 5], Divisible[#, 12], 4 StirlingS2[n/#+3, 5] - 24 StirlingS2[n/#+2, 5] + 44 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 10], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 61 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 6], 2 StirlingS2[n/#+3, 5] - 9 StirlingS2[n/#+2, 5] + 7 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], Divisible[#, 5], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 35 StirlingS2[n/#+2, 5] - 50 StirlingS2[n/#+1, 5] + 25 StirlingS2[n/#, 5], Divisible[#, 4], 2 StirlingS2[n/#+3, 5] - 12 StirlingS2[n/#+2, 5] + 26 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 3], 3 StirlingS2[n/#+2, 5] - 15 StirlingS2[n/#+1, 5] + 21 StirlingS2[n/#, 5], Divisible[#, 2], 3 StirlingS2[n/#+2, 5] - 11 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], True, StirlingS2[n/#, 5]] &], {n, 1, 40}]
mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[
Divisible[d, 60], Log[1 - 5x^d] - Log[1 - 4x^d], Divisible[d, 30],
(3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + Log[1 - x^d]) / 4, Divisible[d, 20],
(2 Log[1 - 5x^d] - 2 Log[1 - 4x^d] + Log[1 - 2x^d] - Log[1 - x^d]) / 3,
Divisible[d, 15], (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
2 Log[1 - 2x^d] + 3 Log[1 - x^d]) / 8, Divisible[d, 12],
(4 Log[1 - 5x^d] - 5 Log[1 - 4x^d]) / 5, Divisible[d, 10],
(5 Log[1 - 5x^d] - 5 Log[1 - 4x^d] + 4 Log[1 - 2x^d] - Log[1 - x^d]) / 12,
Divisible[d, 6], (11 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 5 Log[1 - x^d]) /
20, Divisible[d, 5], (5 Log[1 - 5x^d] - Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
2 Log[1 - 2x^d] + Log[1 - x^d]) / 24, Divisible[d, 4], (7 Log[1 - 5x^d] -
10 Log[1 - 4x^d] + 5 Log[1 - 2x^d] - 5 Log[1 - x^d]) / 15,
Divisible[d, 3], (7 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 10 Log[1 - 3x^d] -
10 Log[1 - 2x^d] + 15 Log[1 - x^d]) / 40, Divisible[d, 2],
(13 Log[1 - 5x^d] - 25 Log[1 - 4x^d] + 20 Log[1 - 2x^d] -
5 Log[1 - x^d]) / 60, True, (Log[1 - 5x^d] - 5 Log[1 - 4x^d] +
10 Log[1 - 3x^d] - 10 Log[1 - 2x^d] + 5 Log[1 - x^d]) / 120], {d, 1, mx}], {x, 0, mx}], x], 1]
(End)
CROSSREFS
Column 5 of A152175.
Sequence in context: A216778 A337105 A056306 * A114479 A074574 A267899
KEYWORD
nonn
STATUS
approved