login
Number of primitive (period n) n-bead necklaces with exactly five different colored beads.
4

%I #17 Jun 06 2018 14:32:37

%S 0,0,0,0,24,300,2400,15750,92680,510288,2691600,13793850,69309240,

%T 343499100,1686135352,8221421250,39901776360,193053923860,

%U 932142850800,4495236287850,21664357532920,104388118174500,503044634004000,2425003910574000,11696087875731600

%N Number of primitive (period n) n-bead necklaces with exactly five different colored beads.

%C Turning over the necklace is not allowed.

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

%H Alois P. Heinz, <a href="/A056290/b056290.txt">Table of n, a(n) for n = 1..1000</a>

%F sum mu(d)*A056285(n/d) where d|n.

%p with(numtheory):

%p b:= proc(n, k) option remember; `if`(n=0, 1,

%p add(mobius(n/d)*k^d, d=divisors(n))/n)

%p end:

%p a:= n-> add(b(n, 5-j)*binomial(5, j)*(-1)^j, j=0..5):

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jan 25 2015

%t b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^# &]/n];

%t a[n_] := Sum[b[n, 5 - j]*Binomial[5, j]*(-1)^j, {j, 0, 5}];

%t Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Jun 06 2018, after _Alois P. Heinz_ *)

%Y Cf. A001692.

%Y Column k=5 of A254040.

%K nonn

%O 1,5

%A _Marks R. Nester_