login
Number of primitive (period n) n-bead necklaces with exactly three different colored beads.
4

%I #17 Jun 06 2018 14:33:52

%S 0,0,2,9,30,89,258,720,2016,5583,15546,43215,120750,338001,950030,

%T 2677770,7573350,21478632,61088874,174179133,497812378,1425832077,

%U 4092087522,11765778330,33887517840,97756266615,282414622728,816999371955,2366509198350,6862929885407

%N Number of primitive (period n) n-bead necklaces with exactly three different colored beads.

%C Turning over the necklace is not allowed.

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

%H Alois P. Heinz, <a href="/A056288/b056288.txt">Table of n, a(n) for n = 1..1000</a>

%F Sum mu(d)*A056283(n/d) where d|n.

%p with(numtheory):

%p b:= proc(n, k) option remember; `if`(n=0, 1,

%p add(mobius(n/d)*k^d, d=divisors(n))/n)

%p end:

%p a:= n-> add(b(n, 3-j)*binomial(3, j)*(-1)^j, j=0..3):

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jan 25 2015

%t b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^#&]/n];

%t a[n_] := Sum[b[n, 3 - j]*Binomial[3, j]*(-1)^j, {j, 0, 3}];

%t Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Jun 06 2018, after _Alois P. Heinz_ *)

%Y Cf. A027376.

%Y Column k=3 of A254040.

%K nonn

%O 1,3

%A _Marks R. Nester_