login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056217 Primes p for which the period of reciprocal 1/p is (p-1)/12. 8
37, 613, 733, 1597, 2677, 3037, 4957, 5197, 5641, 7129, 7333, 7573, 8521, 8677, 11317, 14281, 14293, 15289, 15373, 16249, 17053, 17293, 17317, 19441, 20161, 21397, 21613, 21997, 23053, 23197, 24133, 25357, 25717, 26053, 26293, 27277 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Cyclic numbers of the twelfth degree (or twelfth order): the reciprocals of these numbers belong to one of twelve different cycles. Each cycle has the (number minus 1)/12 digits.

Primes p such that the order of 2 mod p is (p-1)/12. - Robert Israel, Dec 08 2017

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Index entries for sequences related to decimal expansion of 1/n

MAPLE

select(p -> isprime(p) and numtheory:-order(10, p) = (p-1)/12, [seq(i, i=13..30000, 12)]); # Robert Israel, Dec 08 2017

MATHEMATICA

f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 3000]], f[ # ] == 12 &]

CROSSREFS

Sequence in context: A217501 A133998 A231381 * A105464 A140764 A228225

Adjacent sequences:  A056214 A056215 A056216 * A056218 A056219 A056220

KEYWORD

nonn,base

AUTHOR

Robert G. Wilson v, Aug 02 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 23:00 EST 2019. Contains 319365 sequences. (Running on oeis4.)