

A056207


Number of binary trees of height <= n.


5



3, 24, 675, 458328, 210066388899, 44127887745906175987800, 1947270476915296449559703445493848930452791203, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352024
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

T. K. Moon, "Enumerations of binary trees, types of trees and the number of reversible variable length codes," submitted to Discrete Applied Mathematics, 2000.


LINKS

Table of n, a(n) for n=1..8.
Index entries for sequences of form a(n+1)=a(n)^2 + ...


FORMULA

a_n = d_n + a_{n1} (d_n is the number of binary trees of depth exactly n, A001699).
a(n) = A003095(n+2)2 = A004019(n+1)1 = a(n1)^2+4*a(n1)+3


CROSSREFS

Cf. A001699, A002449.
Sequence in context: A292813 A293249 A202944 * A297561 A326084 A301525
Adjacent sequences: A056204 A056205 A056206 * A056208 A056209 A056210


KEYWORD

easy,nonn


AUTHOR

Todd K. Moon (Todd.Moon(AT)ece.usu.edu), Aug 02 2000


EXTENSIONS

More terms from Henry Bottomley, Jul 09 2001


STATUS

approved



