login
Number of n X 6 binary matrices under row and column permutations and column complementations.
3

%I #10 Jun 02 2023 11:12:58

%S 1,1,7,23,153,849,6128,43534,319119,2255466,15307395,98349144,

%T 597543497,3430839916,18653684881,96273409815,473010823993,

%U 2218614773950,9961651259869,42927432229913,177963663264430

%N Number of n X 6 binary matrices under row and column permutations and column complementations.

%D M. A. Harrison, On the number of classes of binary matrices, IEEE Trans.Computers, 22 (1973), 1048-1051.

%H Andrew Howroyd, <a href="/A056205/b056205.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_312">Index entries for linear recurrences with constant coefficients</a>, order 312.

%F G.f.: 1/46080*(1/(1 - x^1)^64 + 1053/(1 - x^2)^32 + 30/(1 - x^1)^32/(1 - x^2)^16 + 4920/(1 - x^4)^16 + 180/(1 - x^1)^16/(1 - x^2)^24 + 120/(1 - x^1)^8/(1 - x^2)^28 + 160/(1 - x^1)^16/(1 - x^3)^16 + 5280/(1 - x^2)^8/(1 - x^6)^8 + 960/(1 - x^1)^8/(1 - x^2)^4/(1 - x^3)^8/(1 - x^6)^4 + 3840/(1 - x^4)^4/(1 - x^12)^4 + 640/(1 - x^1)^4/(1 - x^3)^20 + 1920/(1 - x^2)^2/(1 - x^6)^10 + 720/(1 - x^1)^8/(1 - x^2)^4/(1 - x^4)^12 + 5760/(1 - x^8)^8 + 2160/(1 - x^2)^8/(1 - x^4)^12 + 1440/(1 - x^1)^4/(1 - x^2)^6/(1 - x^4)^12 + 2304/(1 - x^1)^4/(1 - x^5)^12 + 6912/(1 - x^2)^2/(1 - x^10)^6 + 3840/(1 - x^1)^2/(1 - x^2)^1/(1 - x^3)^2/(1 - x^6)^9 + 3840/(1 - x^4)^1/(1 - x^12)^5).

%Y Column k=6 of A363349.

%Y Cf. A005232, A006380, A006381, A006382, A002727, A006148, A052264.

%K nonn

%O 0,3

%A _Vladeta Jovovic_, Aug 05 2000