This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056161 Solutions (value of x) of Diophantine equation 2*x^2 + 3*x + 2 = r^2. 3
 2, 7, 94, 263, 3218, 8959, 109342, 304367, 3714434, 10339543, 126181438, 351240119, 4286454482, 11931824527, 145613270974, 405330793823, 4946564758658, 13769315165479, 168037588523422, 467751384832487, 5708331445037714, 15889777769139103, 193915231542758878 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The same equation also has negative solutions x=-c(n), where c would be the sequence {1,2,17,46,553,1538,18761,52222,...} with the corresponding values of r being {1,2,23,64,781,2174,26531,73852,...}. Moreover, replacing x with x+K, one obtains the Diophantine equation 2*x^2+(4*K+3)*x+(2*K^2+3*K+2)=r^2. Since K can be any integer (for example K=-1, giving 2*x^2-x+1=r^2), this amounts to an infinite family of Diophantine equations with closely related solutions. For example, if the present equation has a solution pair {a(n), A055979(n)}, the one with x replaced by x+K will have a solution {a(n)-K, A055979(n)}. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1). FORMULA a(n) = floor(A055979(n)/sqrt(2)). G.f.: (x^4 + x^3 - 19*x^2 - 5*x - 2) / (x^5 - x^4 - 34*x^3 + 34*x^2 + x - 1). - Alois P. Heinz, Jun 03 2009 a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5). - Colin Barker, May 17 2015 MAPLE a:= n-> (Matrix([94, 7, 2, -1, -2]). Matrix([[1, 1, 0, 0, 0], [34, 0, 1, 0, 0], [ -34, 0, 0, 1, 0], [ -1, 0, 0, 0, 1], [1, 0, 0, 0, 0]])^n)[1, 3]: seq(a(n), n=0..25); # Alois P. Heinz, Jun 03 2009 MATHEMATICA CoefficientList[Series[(x^4 + x^3 - 19 x^2 - 5 x - 2)/(x^5 - x^4 - 34 x^3 + 34 x^2 + x - 1), {x, 0, 22}], x] (* Michael De Vlieger, Jan 09 2016 *) LinearRecurrence[{1, 34, -34, -1, 1}, {2, 7, 94, 263, 3218}, 30] (* Vincenzo Librandi, Jan 10 2016 *) PROG (PARI) Vec((x^4+x^3-19*x^2-5*x-2)/((x-1)*(x^2-6*x+1)*(x^2+6*x+1)) + O(x^100)) \\ Colin Barker, May 17 2015 (MAGMA) I:=[2, 7, 94, 263, 3218]; [n le 5 select I[n] else Self(n-1)+34*Self(n-2)-34*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Jan 10 2016 CROSSREFS Cf. A055979. Sequence in context: A123995 A224439 A304722 * A076740 A112290 A072059 Adjacent sequences:  A056158 A056159 A056160 * A056162 A056163 A056164 KEYWORD nonn,easy AUTHOR Helge Robitzsch (hrobi(AT)math.uni-goettingen.de), Aug 01 2000 EXTENSIONS More terms from Alois P. Heinz, Jun 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 12:31 EST 2019. Contains 329864 sequences. (Running on oeis4.)