

A056131


Sequence A001033 gives the numbers n such that the sum of the squares of n consecutive odd numbers x^2 + (x+2)^2 + ... +(x+2n2)^2 = k^2 for some integer k. For each n, this sequence gives the least value of x.


3



1, 27, 27, 91, 151, 225, 31, 67, 14037, 47, 119, 4177, 165, 103, 3599, 291, 11467887, 3089, 1297, 379, 57, 131, 110311, 153, 2637, 353, 163, 1679, 1211, 995, 54863, 105, 43, 615, 439, 15, 12955, 2263, 11661, 1867, 1281, 1433, 46671, 303, 21139, 324545, 4159, 343803
(list;
graph;
refs;
listen;
history;
text;
internal format)




