This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056014 (Fibonacci(2n-1)-Fibonacci(n+1))/2 . 6
 0, 0, 0, 1, 4, 13, 38, 106, 288, 771, 2046, 5401, 14212, 37324, 97904, 256621, 672336, 1760997, 4611642, 12075526, 31617520, 82781215, 216732890, 567428401, 1485570024, 3889310328, 10182407328, 26657986681, 69791674108 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS With a(0)=0, a(1)=1, a(2)=1, a(3)=2, this recurrence produces a(n)=A000045(n) (Fibonacci numbers). Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,....,n, s(0) = 1, s(n) = 4. - Herbert Kociemba, Jun 16 2004 REFERENCES É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-3,-2,1) FORMULA a(n)=4a(n-1)-3a(n-2)-2a(n-3)+a(n-4), a(0)=a(1)=a(2)=0, a(3)=1. Convolution of Fibonacci numbers F(n) with F(2n). - Benoit Cloitre, Jun 07 2004 G.f.: x^3/((1-x-x^2)*(1-3*x+x^2)) - Herbert Kociemba, Jun 16 2004 Binomial transform of x^3/(1-3x^2+x^4), or (essentially) F(2n) with interpolated zeros. a(n)=sum{k=0..n, binomial(n, k)((3/2-sqrt(5)/2)^(k/2)((sqrt(5)/20+1/4)(-1)^k-sqrt(5)/20-1/4)+ (sqrt(5)/2+3/2)^(k/2)((sqrt(5)/20-1/4)(-1)^k-sqrt(5)/20+1/4))} - Paul Barry, Jul 26 2004 Convolution of the powers of 2 (A000079) with the number of positive rational knots with 2n+1 crossings (A051450), with three leading zeros. - Graeme McRae, Jun 28 2006 a(n) = (A001519(n)-A000045(n+1))/2. - R. J. Mathar, Jun 24 2011 MATHEMATICA Table[(Fibonacci[2n-1]-Fibonacci[n+1])/2, {n, 0, 40}]  (* Harvey P. Dale, Mar 24 2011 *) LinearRecurrence[{4, -3, -2, 1}, {0, 0, 0, 1}, 40] (* Vincenzo Librandi, Jun 23 2012 PROG (PARI) a(n)=(fibonacci(2*n-1)-fibonacci(n+1))/2 (MAGMA) I:=[0, 0, 0, 1]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012 CROSSREFS Cf. A000045, A056015. a(1-2n)=A059512(2n), a(-2n)=A027994(2n-1). Sequence in context: A049611 A084851 A094706 * A247287 A159036 A058693 Adjacent sequences:  A056011 A056012 A056013 * A056015 A056016 A056017 KEYWORD nonn,easy AUTHOR Asher Auel (asher.auel(AT)reed.edu), Jun 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 05:25 EST 2017. Contains 294853 sequences.