

A055941


a(n) = Sum_{j=0..k1} (i(j)  j) where n = Sum_{j=0..k1} 2^i(j).


8



0, 0, 1, 0, 2, 1, 2, 0, 3, 2, 3, 1, 4, 2, 3, 0, 4, 3, 4, 2, 5, 3, 4, 1, 6, 4, 5, 2, 6, 3, 4, 0, 5, 4, 5, 3, 6, 4, 5, 2, 7, 5, 6, 3, 7, 4, 5, 1, 8, 6, 7, 4, 8, 5, 6, 2, 9, 6, 7, 3, 8, 4, 5, 0, 6, 5, 6, 4, 7, 5, 6, 3, 8, 6, 7, 4, 8, 5, 6, 2, 9, 7, 8, 5, 9, 6, 7, 3, 10, 7, 8, 4, 9, 5, 6, 1, 10, 8, 9, 6, 10, 7, 8, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Used to calculate number of subspaces of Zp^n where Zp is field of integers mod p.
Consider a square matrix A and call it special if (0) A is an upper triangular matrix, (1) a nonzero column of A has a 1 on the main diagonal and (2) if a row has a 1 on the main diagonal then this is the only nonzero element in that row.
If the diagonal of a special matrix is given (it can only contain 0's and 1's), many of the fields of A are determined by (0), (1) and (2). The number of fields that can be freely chosen while still satisfying (0), (1) and (2) is a(n), where n is the diagonal, read as a binary number with least significant bit at upper left.
a(n) is also the minimum number of adjacent bit swap operations required to pack all the ones of n to the right.  Philippe Beaudoin, Aug 19 2014


REFERENCES

A. Siegel, Linear Aspects of Boolean Functions, 1999 (unpublished).


LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..10000
Philip Lafrance, Narad Rampersad, Randy Yee, Some properties of a RudinShapirolike sequence, arXiv:1408.2277 [math.CO] 2014 (see page 2).


FORMULA

a(n) = Sum (total number of zerobits to the right of 1bit) over all 1bits of n.
a(n) = A161511(n)  A000120(n) = A161920(n+1)  1  A029837(n+1).
a(n) = 0 if A241816(n) = n; 1 + a(A241816(n)) otherwise.  Philippe Beaudoin, Aug 19 2014


EXAMPLE

20 = 2^4 + 2^2, thus a(20) = (20) + (41) = 5.


MATHEMATICA

b[n_] := b[n] = If[n == 0, 0, If[EvenQ[n], b[n/2] + DigitCount[n/2, 2, 1], b[(n  1)/2] + 1]];
a[n_] := b[n]  DigitCount[n, 2, 1];
Table[a[n], {n, 0, 100}] (* JeanFrançois Alcover, Sep 23 2018 *)


PROG

(GNU/MIT Scheme:) (define (A055941 n) (let loop ((n n) (ze 0) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (1+ ze) s)) (else (loop (/ (1+ n) 2) ze (+ s ze))))))
 Antti Karttunen, Oct 12 2009
(PARI) a(n) = {my(b=binary(n)); nb = 0; for (i=1, #b1, if (b[i], nb += sum(j=i+1, #b, !b[j])); ); nb; } \\ Michel Marcus, Aug 12 2014
(Python)
def A055941(n):
s = bin(n)[2:]
return sum(s[i:].count('0') for i, d in enumerate(s, start=1) if d == '1')
# Chai Wah Wu, Sep 07 2014


CROSSREFS

Cf. A000120, A029837, A161511, A161920, A126441.
Sequence in context: A337835 A119387 A335905 * A290537 A272569 A068076
Adjacent sequences: A055938 A055939 A055940 * A055942 A055943 A055944


KEYWORD

nonn,base


AUTHOR

Anno Siegel (siegel(AT)zrz.tuberlin.de), Jul 18 2000


EXTENSIONS

Edited and extended by Antti Karttunen, Oct 12 2009


STATUS

approved



