|
|
A055927
|
|
Numbers k such that k + 1 has one more divisor than k.
|
|
14
|
|
|
1, 3, 9, 15, 25, 63, 121, 195, 255, 361, 483, 729, 841, 1443, 3363, 3481, 3721, 5041, 6241, 10201, 15625, 17161, 18224, 19321, 24963, 31683, 32761, 39601, 58564, 59049, 65535, 73441, 88208, 110889, 121801, 143641, 145923, 149769, 167281
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers k such that d(k+1) - d(k) = 1, where d(k) is A000005(k), the number of divisors.
Numbers k such that A049820(k) = A049820(k+1). - Jaroslav Krizek, Feb 10 2014
Numbers k such that A051950(k+1) = 1. - Danny Rorabaugh, Oct 05 2017
|
|
LINKS
|
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Donovan Johnson)
|
|
EXAMPLE
|
a(4) = 15, as 15 has 4 and 16 has 5 divisors. a(6) = 63, as 63 and 64 have 6 and 7 divisors respectively.
|
|
MAPLE
|
select(n->tau(n+1)=tau(n)+1, [$1..2*10^5]); # Paolo P. Lava, Aug 02 2018
|
|
MATHEMATICA
|
Select[ Range[ 200000], DivisorSigma[0, # ] + 1 == DivisorSigma[0, # + 1] &]
|
|
PROG
|
(PARI) for(n=1, 1000, if(numdiv(n+1)-numdiv(n)==1, print1(n, ", "))); /* Joerg Arndt, Apr 09 2011 */
|
|
CROSSREFS
|
Numbers where repetition occurs in A049820.
Cf. A000005, A006073, A045983, A049820, A075044.
Sequence in context: A209980 A085046 A138495 * A316261 A354958 A249734
Adjacent sequences: A055924 A055925 A055926 * A055928 A055929 A055930
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Jul 21 2000
|
|
EXTENSIONS
|
More terms from David W. Wilson, Sep 06 2000, who remarks that every element is of form n^2 or n^2 - 1.
|
|
STATUS
|
approved
|
|
|
|