

A055894


Inverse Moebius transform of Pascal's triangle A007318.


1



1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 4, 8, 4, 3, 2, 5, 10, 10, 5, 2, 4, 6, 18, 22, 18, 6, 4, 2, 7, 21, 35, 35, 21, 7, 2, 4, 8, 32, 56, 78, 56, 32, 8, 4, 3, 9, 36, 87, 126, 126, 87, 36, 9, 3, 4, 10, 50, 120, 220, 254, 220, 120, 50, 10, 4, 2, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Table of n, a(n) for n=0..76.
N. J. A. Sloane, Transforms
Index entries for triangles and arrays related to Pascal's triangle


EXAMPLE

Triangle starts:
[ 0] 1,
[ 1] 1, 1,
[ 2] 2, 2, 2,
[ 3] 2, 3, 3, 2,
[ 4] 3, 4, 8, 4, 3,
[ 5] 2, 5, 10, 10, 5, 2,
[ 6] 4, 6, 18, 22, 18, 6, 4,
[ 7] 2, 7, 21, 35, 35, 21, 7, 2,
[ 8] 4, 8, 32, 56, 78, 56, 32, 8, 4,
[ 9] 3, 9, 36, 87, 126, 126, 87, 36, 9, 3, ...


PROG

(PARI)
T(n, k) = if(n<=0, n==0, sumdiv(gcd(n, k), d, binomial(n/d, k/d) ) );
/* print triangle: */
{ for (n=0, 17, for (k=0, n, print1(T(n, k), ", "); ); print(); ); }
/* Joerg Arndt, Oct 21 2012 */


CROSSREFS

Row sums give A055895.
Sequence in context: A103183 A143901 A115263 * A224713 A168557 A194320
Adjacent sequences: A055891 A055892 A055893 * A055895 A055896 A055897


KEYWORD

nonn,tabl


AUTHOR

Christian G. Bower, Jun 09 2000


STATUS

approved



