login
Least increasing sequence with a(1) = 1 and Hankel transform {1,1,1,1,...}.
2

%I #3 Mar 30 2012 17:37:51

%S 1,2,5,6,42,43,18626,18627,5798368522871,5798368522872,

%T 194935493755610196550803104551677768964,

%U 194935493755610196550803104551677768965

%N Least increasing sequence with a(1) = 1 and Hankel transform {1,1,1,1,...}.

%C Hankel transform {t(n)} of {a(n)} is given by t(n) = Det[{a(1), a(2), ..., a(n)}, {a(2), a(3), ..., a(n+1)}, ..., {a(n), a(n+1), ..., a(2n-1)}].

%e Given that {a(n)} = {1,2,5,6,a(5),...}, a(5) is seen to be 42 since Det[{1,2,5},{2,5,6},{5,6,42}] = 1, whereas Det[{1,2,5},{2,5,6},{5,6,43}] = 2.

%K nonn

%O 1,2

%A _John W. Layman_, Jul 14 2000