login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055856 Susceptibility series H_4 for 2-dimensional Ising model (divided by 2). 2

%I

%S 1,16,90,328,888,2016,3994,7212,12070,19112,28846,41976,59116,81132,

%T 108738,142972,184638,234952,294806,365596,448296,544492,655230,

%U 782292,926794,1090716,1275238,1482548,1713880,1971636,2257102,2572896,2920350,3302308,3720138

%N Susceptibility series H_4 for 2-dimensional Ising model (divided by 2).

%H Colin Barker, <a href="/A055856/b055856.txt">Table of n, a(n) for n = 0..1000</a>

%H A. J. Guttmann and I. G. Enting, <a href="https://doi.org/10.1103/PhysRevLett.76.344">Solvability of some statistical mechanical systems</a>, Phys. Rev. Lett., 76 (1996), 344-347.

%H A. J. Guttmann, <a href="http://www.ms.unimelb.edu.au/~tonyg/articles/viennafinal.pdf">Indicators of solvability for lattice models</a>, Discrete Math., 217 (2000), 167-189.

%H D. Hansel et al., <a href="http://dx.doi.org/10.1007/BF01010400">Analytical properties of the anisotropic cubic Ising model</a>, J. Stat. Phys., 48 (1987), 69-80.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2,-4,0,4,2,-3,-1,1).

%F G.f.: (1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1 -x^3)*((1 -x)^4)*(1 +x)^3).

%o (PARI) Vec((1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1 -x^3)*((1 -x)^4)*(1 +x)^3) + O(x^40)) \\ _Colin Barker_, Dec 10 2016

%Y Cf. A054275, A054410, A054389, A054764, A055857.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Jun 07 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 12:18 EDT 2019. Contains 328160 sequences. (Running on oeis4.)