%I #10 Sep 08 2022 08:45:01
%S 0,1,10,64,328,1462,5908,22180,78592,265729,864146,2719028,8316200,
%T 24814832,72453344,207502016,584094080,1618757120,4423347200,
%U 11932579840,31812874240,83901227008,219074805760,566754967552
%N Convolution of A055854 with A011782.
%C Tenth column of triangle A055587.
%C T(n,8) of array T as in A049600.
%H G. C. Greubel, <a href="/A055855/b055855.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (18,-144,672,-2016,4032,-5376,4608,-2304,512).
%F a(n) = T(n, 8) = A055587(n+8, 9).
%F G.f.: x*(1-x)^8/(1-2*x)^9.
%p seq(coeff(series(x*(1-x)^8/(1-2*x)^9, x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Jan 16 2020
%t CoefficientList[Series[x*(1-x)^8/(1-2*x)^9, {x,0,30}], x] (* _G. C. Greubel_, Jan 16 2020 *)
%o (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^8/(1-2*x)^9)) \\ _G. C. Greubel_, Jan 16 2020
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^8/(1-2*x)^9 )); // _G. C. Greubel_, Jan 16 2020
%o (Sage)
%o def A055855_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( x*(1-x)^8/(1-2*x)^9 ).list()
%o A055855_list(30) # _G. C. Greubel_, Jan 16 2020
%Y Cf. A011782, A049600, A055584, A055857.
%K nonn,easy
%O 0,3
%A _Wolfdieter Lang_ May 30 2000