OFFSET
0,2
COMMENTS
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 7*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
FORMULA
a(n) = 8*a(n-1) + (-1)^n*C(2, 2-n).
G.f.: (1-x)^2/(1-8*x).
a(n) = sum_{k, 0<=k<=n} A201780(n,k)*6^k. - Philippe Deléham, Dec 05 2011
MATHEMATICA
Join[{1, 6}, NestList[8#&, 49, 20]] (* Harvey P. Dale, Dec 08 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jun 03 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved