The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055800 Triangle T read by rows: T(i,0)=1 for i >= 0; T(i,i)=0 for i >= 1; T(i,j) = Sum_{k=1..floor(i/2)} T(i-2k,j-2k+1) for 1 <= j <= i-1, where T(m,n) := 0 if m < 0 or n < 0. 1
 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 1, 1, 1, 2, 3, 4, 3, 1, 0, 1, 1, 1, 2, 3, 4, 3, 1, 0, 0, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 0, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 0, 0, 1, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,25 COMMENTS T(i+j,j) is the number of strings (s(1),...,s(m)) of nonnegative integers s(k) such that m <= i+1, s(m)=j and s(k)-s(k-1) is an odd positive integer for k=2,3,...,m. T(i+j,j) is the number of compositions of j consisting of at most i parts, all positive odd integers. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened C. Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 2A. FORMULA G.f. for k-th diagonal: (1-x^2-x*(x/(1-x^2))^k)/(1-x-x^2). - Vladeta Jovovic, Mar 10 2005 EXAMPLE Triangle begins:   1;   1,0;   1,1,0;   1,1,0,0;   1,1,1,1,0;   ... T(10,5) counts the strings 012345, 0125, 0145, 0345, 05. T(10,5) counts the compositions 11111, 113, 131, 311, 5. MAPLE T:= proc(n, k) option remember;     if n<0 or k<0 then 0;     elif k=0 then 1;     elif k=n then 0;     else add(T(n-2*j, k-2*j+1), j=1..floor(n/2)) ;     end if; end proc: seq(seq(T(n, k), k=0..n), n=0..15); # G. C. Greubel, Jan 24 2020 MATHEMATICA T[n_, k_]:= T[n, k]= If[n<0 || k<0, 0, If[k==0, 1, If[k==n, 0, Sum[T[n-2*j, k- 2*j+1], {j, Floor[n/2]}]]]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 24 2020 *) PROG (PARI) T(n, k) = if(n<0 || k<0, 0, if(k==0, 1, if(k==n, 0, sum(j=1, n\2, T(n-2*j, k-2*j+1) )))); for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 23 2020 (MAGMA) function T(n, k)   if n lt 0 or k lt 0 then return 0;   elif k eq 0 then return 1;   elif k eq n then return 0;   else return (&+[T(n-2*j, k-2*j+1): j in [1..Floor(n/2)]]);   end if; return T; end function; [T(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 23 2020 (Sage) @CachedFunction def T(n, k):     if (n<0 or k<0): return 0     elif (k==0): return 1     elif (k==n): return 0     else: return sum(T(n-2*j, k-2*j+1) for j in (1..floor(n/2))) [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jan 23 2020 (GAP) T:= function(n, k)     if n<0 or k<0 then return 0;     elif k=0 then return 1;     elif k=n then return 0;     else return Sum([1..Int(n/2)], j-> T(n-2*j, k-2*j+1));     fi; end; Flat(List([0..15], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jan 23 2020 CROSSREFS Row sums are powers of 2: A016116. T(2n, n)=A000045(n) for n >= 1 (Fibonacci numbers). Cf. A027926. Sequence in context: A189996 A016390 A327688 * A060572 A163543 A180009 Adjacent sequences:  A055797 A055798 A055799 * A055801 A055802 A055803 KEYWORD nonn,tabl AUTHOR Clark Kimberling, May 28 2000 EXTENSIONS a(88)-a(90) from Michel Marcus, Jan 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 05:20 EDT 2020. Contains 334837 sequences. (Running on oeis4.)