OFFSET
1,1
COMMENTS
Corresponding values of p in A023237. - Jaroslav Krizek, Jul 14 2010
From Sergey Pavlov, Jun 14 2017: (Start)
Let a, b, and c be prime numbers such that c = 10b + 1 = 10 * (10a + 1) + 1. Then c = 311, b = 31, a = 3. (There are no other solutions since any prime p > 3 is either of the form 3k + 1 or 3k - 1. In other words, while a > 3 and a, b are primes, a == 1 (mod 3), b == -1 (mod 3), whereas c == 0 (mod 3).)
So is for any similar sequence of primes (of the form kn + 1) where 2k + 1 == 0 (mod 3), e.g., for A002144: the equation of the form c = kb + 1 = k * (ka + 1) + 1 while a, b, c are primes could have the only solution iff a = 3 (but also could have not).
(End) [This comment needs to be rewritten. - N. J. A. Sloane, Feb 18 2019]
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
1031 = 103*10 + 1, 1 appended to 103.
MAPLE
select(isprime, map(t-> 10*t+1, select(isprime, [3, seq(i, i=7..2000, 6)]))); # Robert Israel, Jun 13 2017
MATHEMATICA
Select[10Prime[Range[200]]+1, PrimeQ] (* Harvey P. Dale, Feb 04 2011 *)
PROG
(PARI) is(n)=n%10==1 && isprime(n) && isprime(n\10) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 13 2000
STATUS
approved