login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055650 Numbers n such that n | Phi(n)*number of Divisors(n) - Sigma(n). 0
1, 3, 14, 42, 76, 376, 3608, 163712, 163944, 196128, 277688, 491136, 833064, 849120, 905814, 911008, 1080328, 1653520, 1847898, 1935128, 2733024, 3145216, 3240984, 4586240, 4734736, 4960560, 5805384 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Comments from Farideh Firoozbakht, Mar 17 2007: (Start)

I. If p is an odd prime then m=2^n*p is in the sequence iff p=(n+3)*2^n-1. For example, 14, 76, 376, 163712, 3145216, 1073733632,1443108749312 & 67185481812096157153425363042304 are such terms. The numbers n such that (n+3)*2^n-1 is prime up to 10000 are 1, 2, 3, 7, 9,13,18, 50, 210, 301, 349, 1160, 1796, 2677 & 8823. Thus 2^8823*(8826*2^8823-1) is the largest such term that I have found.

II. If m is in the sequence and 3 | d(m)*phi(m) - sigma(m) but 3 doesn't divide m then 3*m is in the sequence. Thus 1, 14, 163712, 277688, 911008, 1080328, 1653520, 1935128 & 4586240 are such terms and 2^2677*(2680*2^2677-1) is the largest such term that I have found. (End)

REFERENCES

Inspired by David Wells, Curious and Interesting Numbers (Revised), Penguin Books.

LINKS

Table of n, a(n) for n=1..27.

MATHEMATICA

Do[If[Mod[EulerPhi[n]*DivisorSigma[0, n]-DivisorSigma[1, n], n]==0, Print[n]], {n, 1, 1.05*10^7}]

Select[Range[6000000], Divisible[EulerPhi[#]DivisorSigma[0, #]- DivisorSigma[ 1, #], #]&] (* Harvey P. Dale, Mar 10 2012 *)

CROSSREFS

Sequence in context: A213482 A296267 A104905 * A000550 A124650 A291138

Adjacent sequences:  A055647 A055648 A055649 * A055651 A055652 A055653

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Jun 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:01 EST 2019. Contains 319309 sequences. (Running on oeis4.)