This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055601 Number of n X n binary matrices with no zero rows. 17
 1, 1, 9, 343, 50625, 28629151, 62523502209, 532875860165503, 17878103347812890625, 2375680873491867011912191, 1255325460068093790930770843649, 2644211984585174742731315532085090303, 22235498641774645581443610453175918212890625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n! = Sum_{n>=0} (m*q^n + b)^n * x^n / n! for all q, m, b. - Paul D. Hanna, Jan 02 2008 LINKS Kenny Lau, Table of n, a(n) for n = 0..57 FORMULA a(n) = A092477(n, n) for n>0. a(n) = (2^n - 1 )^n. - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001 a(n) = Sum_{k=0..n} (-1)^k*C(n, k)*2^((n-k)*n). E.g.f.: A(x) = Sum_{n>=0} 2^(n^2) * exp(-2^n*x) * x^n/n!. - Paul D. Hanna, Jan 02 2008 O.g.f.: Sum_{n>=0} 2^(n^2)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Jan 20 2010 EXAMPLE A(x) = 1 + x + 3^2*x^2/2! + 7^3*x^3/3! + 15^4*x^4/4! +... + (2^n-1)^n*x^n/n! +... A(x) = exp(-x) + 2*exp(-2x) + 2^4*exp(-4x)*x^2/2! + 2^9*exp(-8x)*x^3/3! +...+ 2^(n^2)*exp(-2^n*x)*x^n/n! +... This is a special case of the more general statement: Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1, b=-1. - Paul D. Hanna, Jan 02 2008 MAPLE with(combinat): a:= n-> mul(stirling2(n, 2), j=2..n): seq(a(n), n=1..10); # Zerinvary Lajos, Jan 01 2009 MATHEMATICA Join[{1}, Table[(2^n-1)^n, {n, 16}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *) PROG (PARI) a(n)=n!*polcoeff(sum(k=0, n, 2^(k^2)*exp(-2^k*x)*x^k/k!), n) \\ Paul D. Hanna, Jan 02 2008 (Python) a = lambda n:((1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:32 EDT 2019. Contains 323478 sequences. (Running on oeis4.)