This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055587 Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently. 9
 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 20, 13, 5, 1, 1, 32, 48, 38, 19, 6, 1, 1, 64, 112, 104, 63, 26, 7, 1, 1, 128, 256, 272, 192, 96, 34, 8, 1, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1, 1024, 2816, 4096 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-z)*(1-x*z*(1-z)/(1-2*z))). Column m (without leading zeros) is obtained from convolution of A000012 (powers of 1) with m-fold convoluted A011782. LINKS FORMULA a(n, m)= Am(n, 0) if n >= m >= 0 and a(n, m) := 0 if n= 0. T(n, k) = sum_{j=0..n-k} C(n-k, j)*C(k+j-1, k-1). - Paul D. Hanna, Jan 14 2004 EXAMPLE {1}; {1, 1}; {1, 2, 1}; {1, 4, 3, 1}; {1, 8, 8, 4, 1}; ... Fourth row polynomial (n=3): p(3,x)= 1+4*x+3*x^2+x^3 MATHEMATICA t[n_, k_] := Hypergeometric2F1[k, k-n, 1, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Paul D. Hanna *) PROG (PARI) {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( 1 / ((1 - z) * (1 - x*z * (1 - z) / (1 - 2*z) + z * O(z^n) + x * O(x^k))), k), n))}; /* Michael Somos, Sep 30 2003 */ (PARI) {T(n, k)=if(k>n||n<0||k<0, 0, if(k==0||k==n, 1, sum(j=0, n-k, binomial(n-k, j)*binomial(k+j-1, k-1)); ); )} (Hanna) CROSSREFS Cf. A049600, column sequences are A000012 (powers of 1), A000079 (powers of 2), A001792, A049611, A049612, A055589, A055852-5 for m=0..9, row sums: A055588. Sequence in context: A307133 A218664 A247286 * A137743 A099239 A167630 Adjacent sequences:  A055584 A055585 A055586 * A055588 A055589 A055590 KEYWORD easy,nonn,tabl AUTHOR Wolfdieter Lang, May 30 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 03:28 EDT 2019. Contains 328025 sequences. (Running on oeis4.)