%I #14 Oct 22 2015 08:09:05
%S 4,72,58800,1757711340,54169994838960,950645196424756293060600,
%T 94630125612279498512066506747436400,
%U 14119054639791549212725337736060964803166626000
%N Differences of arithmetic progressions of which the terms give chains of n consecutive nonsquarefree numbers if started with terms of A045882(n) or A051681(n).
%H M. Filaseta and O. Trifonov, <a href="http://dx.doi.org/10.1007/978-1-4612-3464-7_15">On Gaps between Squarefree Numbers</a>. In Analytic Number Theory, Vol 85, 1990, Birkhauser, Basel, pp. 235-253.
%H E. Fogels, <a href="http://dx.doi.org/10.1017/S0305004100017990">On the average values of arithmetic functions</a>, Proc. Cambridge Philos. Soc. 1941, 37: 358-372.
%H K. F. Roth, <a href="http://jlms.oxfordjournals.org/content/s1-26/4/263.extract">On the gaps between squarefree numbers</a>, J. London Math. Soc. 1951 (2) 26:263-268.
%F a(n) = LCM(x, x+1, ..., x+n-1), where x = A045882(n).
%e For n=5, the difference of the relevant progression is 54169994838960.
%Y Cf. A013929, A051681, A045882, A005117, A053797, A005117, A053806.
%K nonn
%O 1,1
%A _Labos Elemer_, Jul 10 2000