login
Number of asymmetric types of (4,n)-hypergraphs under action of symmetric group S_4.
0

%I #7 May 10 2013 12:44:29

%S 7,64,352,1485,5245,16290,45830,119042,289367,664878,1455136,3051762,

%T 6163153,12033700,22792660,41997387,75463460,132510654,227803866,

%U 384031745,635752338,1034842530,1658130458,2617965384,4076707044

%N Number of asymmetric types of (4,n)-hypergraphs under action of symmetric group S_4.

%F G.f.: (1/(1-x)^16-6/(1-x)^8/(1-x^2)^4-3/(1-x)^4/(1-x^2)^6+8/(1-x)^4/(1-x^3)^4+2/(1-x)^2/(1-x^2)^3/(1-x^4)^2+6/(1-x)^4/(1-x^2)^4/(1-x^4)-8/(1-x)^2/(1-x^4)^2/(1-x^6))/24

%e There are 7 asymmetric (4,3)-hypergraphs: {{1,2},{1,2,3},{1,3,4}}, {{1,2},{1,3},{1,2,4}}, {{1,2},{1,2},{1,3}}, {{1},{1,2},{1,2,3}}, {{1},{2,3},{1,2,4}}, {{1},{1,2},{2,3}}, {{1},{2},{1,3}}.

%Y Cf. A006148.

%K nonn

%O 3,1

%A _Vladeta Jovovic_, Jul 09 2000

%E More terms from _James A. Sellers_, Jul 11 2000