|
|
A055528
|
|
a(n)=10*a(n-1)+n^3, a(0)=0.
|
|
0
|
|
|
0, 1, 18, 207, 2134, 21465, 214866, 2149003, 21490542, 214906149, 2149062490, 21490626231, 214906264038, 2149062642577, 21490626428514, 214906264288515, 2149062642889246, 21490626428897373, 214906264288979562, 2149062642889802479, 21490626428898032790
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n)/10^n converges to 470/2187=0.214906264...
|
|
LINKS
|
Table of n, a(n) for n=0..20.
Index entries for linear recurrences with constant coefficients, signature (14,-46,64,-41,10).
|
|
FORMULA
|
a(n) = (10^n-1)*(470/2187)-n^3/9-n^2*(10/27)-n*(110/243).
G.f.: -x*(x^2+4*x+1) / ((x-1)^4*(10*x-1)). - Colin Barker, Sep 13 2014
|
|
PROG
|
(PARI) concat(0, Vec(-x*(x^2+4*x+1)/((x-1)^4*(10*x-1)) + O(x^100))) \\ Colin Barker, Sep 13 2014
|
|
CROSSREFS
|
Cf. A014824.
Sequence in context: A028025 A109126 A022742 * A304202 A298988 A025959
Adjacent sequences: A055525 A055526 A055527 * A055529 A055530 A055531
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Henry Bottomley, Jul 04 2000
|
|
EXTENSIONS
|
Corrected by T. D. Noe, Nov 08 2006
More terms from Colin Barker, Sep 13 2014
|
|
STATUS
|
approved
|
|
|
|