login
a_{k+1} = 6*a_k + 11*a_{k-1} - 19*a_{k-2} - 4*a_{k-3} + a_{k-4}, a_1=1, a_2=2, a_3=19, a_4=118, a_5=875.
4

%I #12 Nov 25 2018 14:11:53

%S 1,2,19,118,875,6180,44389,317236,2270893,16247718,116267271,

%T 831957002,5953209015,42598982984,304823192665,2181205436792,

%U 15607926184313,111684733527034,799175992102923,5718617425358462,40920380028968819

%N a_{k+1} = 6*a_k + 11*a_{k-1} - 19*a_{k-2} - 4*a_{k-3} + a_{k-4}, a_1=1, a_2=2, a_3=19, a_4=118, a_5=875.

%H Harvey P. Dale, <a href="/A055518/b055518.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (6,11,-19,-4,1).

%F a(n) = Sum_{k=1..n} Fibonacci(k)^4*a(n-k), a(0)=1. - _Vladeta Jovovic_, Apr 23 2003

%t LinearRecurrence[{6,11,-19,-4,1},{1,2,19,118,875},30] (* _Harvey P. Dale_, Nov 25 2018 *)

%Y Cf. A054894, A055519.

%K easy,nonn

%O 1,2

%A _Barry Cipra_, Jul 04 2000