login
A055509
Number of odd primes in sequence obtained in 3x+1 (or Collatz) problem starting at n.
10
0, 0, 2, 0, 1, 2, 5, 0, 5, 1, 4, 2, 2, 5, 3, 0, 3, 5, 6, 1, 0, 4, 3, 2, 6, 2, 24, 5, 5, 3, 23, 0, 6, 3, 2, 5, 6, 6, 10, 1, 24, 0, 7, 4, 3, 3, 22, 2, 6, 6, 5, 2, 2, 24, 23, 5, 7, 5, 10, 3, 4, 23, 19, 0, 6, 6, 8, 3, 2, 2, 21, 5, 24, 6, 1, 6, 5, 10, 10, 1, 4, 24, 23, 0, 0, 7, 8, 4, 9, 3, 19, 3, 2, 22, 19
OFFSET
1,3
FORMULA
a(n) = A078350(n) - 1 for n > 1.
a(A196871(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
From Robert Israel, Dec 05 2017: (Start)
If n is odd, a(n) = a(3*n+1) + A010051(n).
If n is even, a(n) = a(n/2). (End)
MAPLE
g:= proc(n) option remember;
local x;
x:= 3*n+1;
x:= x/2^padic:-ordp(x, 2);
if isprime(n) then procname(x)+1 else procname(x) fi
end proc:
g(1):= 0:
seq(g(n/2^padic:-ordp(n, 2)), n=1..100); # Robert Israel, Dec 05 2017
MATHEMATICA
Join[{0}, Table[Count[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &], _?PrimeQ] - 1, {n, 2, 94}]] (* Jayanta Basu, Jun 15 2013 *)
PROG
(Haskell) a055509 n = sum $ map a010051 $ takeWhile (> 2) $ iterate a006370 n -- Reinhard Zumkeller, Oct 08 2011
(PARI) A078350(n, c=0)={while(1<n>>=valuation(n, 2), isprime(n)&&c++; n=n*3+1); c} \\ M. F. Hasler, Dec 05 2017
CROSSREFS
Cf. A055510.
Sequence in context: A341439 A127767 A292577 * A334226 A006667 A112570
KEYWORD
nonn
AUTHOR
G. L. Honaker, Jr., Jun 30 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Aug 09 2001
STATUS
approved