login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055500 a(0)=1, a(1)=1, a(n) = largest prime <= a(n-1)+a(n-2). 7
1, 1, 2, 3, 5, 7, 11, 17, 23, 37, 59, 89, 139, 227, 359, 577, 929, 1499, 2423, 3919, 6337, 10253, 16573, 26821, 43391, 70207, 113591, 183797, 297377, 481171, 778541, 1259701, 2038217, 3297913, 5336129, 8633983, 13970093, 22604069 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Or might be called Ishikawa primes, as he proved that prime(n+2) < prime(n) + prime(n+1) for n > 1. This improves on Bertrand's Postulate (Chebyshev's theorem), which says prime(n+2) < prime(n+1) + prime(n+1). - Jonathan Sondow, Sep 21 2013

LINKS

Zak Seidov and Michael De Vlieger, Table of n, a(n) for n = 0..1000 (First 100 terms from Zak Seidov)

Heihachiro Ishikawa, Über die Verteilung der Primzahlen, Sci. Rep. Tokyo Bunrika Daigaku, Sect. A 2 (1934), 27-40.

FORMULA

a(n) is asymptotic to C*phi^n where phi=(1+sqrt(5))/2 and C=0.25861637901860700965101922576495456677... - Benoit Cloitre, Apr 21 2003

a(n) = A007917(a(n-1) + a(n-2)) for n > 1. - Reinhard Zumkeller, May 01 2013

a(n) >= prime(n-1) for n > 1, by Ishikawa's theorem. - Jonathan Sondow, Sep 21 2013

EXAMPLE

a(9) = 23 because 23 is largest prime <= a(7)+a(6) = 17+11 = 28

MATHEMATICA

PrevPrim[n_] := Block[ {k = n}, While[ !PrimeQ[k], k-- ]; Return[k]]; a[1] = a[2] = 1; a[n_] := a[n] = PrevPrim[ a[n - 1] + a[n - 2]]; Table[ a[n], {n, 1, 42} ]

(* Or, if version >= 6 : *)a[0] = a[1] = 1; a[n_] := a[n] = NextPrime[ a[n-1] + a[n-2] + 1, -1]; Table[a[n], {n, 0, 100}](* Jean-François Alcover, Jan 12 2012 *)

nxt[{a_, b_}]:={b, NextPrime[a+b+1, -1]}; Transpose[NestList[nxt, {1, 1}, 40]] [[1]] (* Harvey P. Dale, Jul 15 2013 *)

PROG

(Haskell)

a055500 n = a055500_list !! n

a055500_list = 1 : 1 : map a007917

               (zipWith (+) a055500_list $ tail a055500_list)

-- Reinhard Zumkeller, May 01 2013

CROSSREFS

Cf. A007917, A055498, A055499, A055400, A055401, A055502, A065435.

Sequence in context: A104892 A065436 A068523 * A018058 A002379 A072465

Adjacent sequences:  A055497 A055498 A055499 * A055501 A055502 A055503

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Jul 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 14:47 EST 2019. Contains 320163 sequences. (Running on oeis4.)