

A055493


Numbers n such that Sum_{k=1..n} k!  2 is prime.


0



3, 4, 5, 12, 13, 19, 65, 90, 123, 211, 281, 459
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are no further terms in this sequence because for all n >= 466 (Sum_{k=1..n} k!)  2 is divisible by 467. [From Dmitry Kamenetsky, Feb 10 2009]


LINKS

Table of n, a(n) for n=1..12.


EXAMPLE

1! + 2! + 3! + 4! + 5! 2 = 1 + 2 + 6 + 24 + 120  2 = 151 which is a prime.


MATHEMATICA

Do[If[PrimeQ[Sum[m!, {m, 1, n}]2], Print[n]], {n, 1, 2500}]
Flatten[Position[Accumulate[Range[500]!]2, _?PrimeQ]] (* Harvey P. Dale, Nov 15 2014 *)


CROSSREFS

Sequence in context: A046964 A235598 A191197 * A109350 A239356 A077034
Adjacent sequences: A055490 A055491 A055492 * A055494 A055495 A055496


KEYWORD

nonn,fini,full


AUTHOR

Robert G. Wilson v, Jul 05 2000


STATUS

approved



