login
A055472
Primes of the form k(k+1)/2+2 (i.e., two more than a triangular number).
7
2, 3, 5, 17, 23, 47, 107, 173, 233, 353, 467, 563, 743, 863, 1277, 1433, 1487, 2213, 2417, 2777, 3083, 3323, 4007, 4373, 5153, 7877, 8387, 10733, 11177, 11783, 13043, 13697, 14537, 15053, 15227, 17207, 17393, 17957, 18917, 21323, 22157, 23873
OFFSET
1,1
COMMENTS
Equal to primes of the form (k^2+15)/8. Also equal to primes p such that 8*p-15 is a square. - Chai Wah Wu, Jul 14 2014
Primes of A152948. - Klaus Purath, Jan 03 2021
LINKS
MATHEMATICA
Select[Table[(n^2-n+4)/2, {n, 3000}], PrimeQ] (* Vincenzo Librandi, Jul 14 2012 *)
Select[Accumulate[Range[0, 300]]+2, PrimeQ] (* Harvey P. Dale, Feb 05 2019 *)
PROG
(Python)
import sympy
[n*(n+1)/2+2 for n in range(10**6) if sympy.ntheory.primetest.isprime(n*(n+1)/2+2)] # Chai Wah Wu, Jul 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jun 27 2000
STATUS
approved